Blog Archives

Causal mediation estimation measures the unobservable

November 5, 2018
By
Causal mediation estimation measures the unobservable

I put together a series of demos for a group of epidemiology students who are studying causal mediation analysis. Since mediation analysis is not always so clear or intuitive, I thought, of course, that going through some examples of simulating data for this process could clarify things a bit. Quite often we are interested in understanding the relationship between an...

Read more »

Cross-over study design with a major constraint

October 22, 2018
By
Cross-over study design with a major constraint

Every new study presents its own challenges. (I would have to say that one of the great things about being a biostatistician is the immense variety of research questions that I get to wrestle with.) Recently, I was approached by a group of researchers who wanted to evaluate an intervention. Actually, they had two, but the second one was...

Read more »

In regression, we assume noise is independent of all measured predictors. What happens if it isn’t?

October 8, 2018
By
In regression, we assume noise is independent of all measured predictors. What happens if it isn’t?

A number of key assumptions underlie the linear regression model - among them linearity and normally distributed noise (error) terms with constant variance In this post, I consider an additional assumption: the unobserved noise is uncorrelated with any covariates or predictors in the model. In this simple model: \ \(Y_i\) has both a structural and stochastic...

Read more »

simstudy update: improved correlated binary outcomes

September 24, 2018
By
simstudy update: improved correlated binary outcomes

An updated version of the simstudy package (0.1.10) is now available on CRAN. The impetus for this release was a series of requests about generating correlated binary outcomes. In the last post, I described a beta-binomial data generating process that uses the recently added beta distribution. In addition to that update, I’ve added functionality to genCorGen and addCorGen, functions...

Read more »

Binary, beta, beta-binomial

September 10, 2018
By
Binary, beta, beta-binomial

I’ve been working on updates for the simstudy package. In the past few weeks, a couple of folks independently reached out to me about generating correlated binary data. One user was not impressed by the copula algorithm that is already implemented. I’ve added an option to use an algorithm developed by Emrich and Piedmonte in 1991, and will be...

Read more »

The power of stepped-wedge designs

August 27, 2018
By
The power of stepped-wedge designs

Just before heading out on vacation last month, I put up a post that purported to compare stepped-wedge study designs with more traditional cluster randomized trials. Either because I rushed or was just lazy, I didn’t exactly do what I set out to do. I did confirm that a multi-site randomized clinical trial can be more efficient than a...

Read more »

Multivariate ordinal categorical data generation

August 14, 2018
By
Multivariate ordinal categorical data generation

An economist contacted me about the ability of simstudy to generate correlated ordinal categorical outcomes. He is trying to generate data as an aide to teaching cost-effectiveness analysis, and is hoping to simulate responses to a quality-of-life survey instrument, the EQ-5D. The particular instrument has five questions related to mobility, self-care, activities, pain, and anxiety. Each item has three...

Read more »

Randomize by, or within, cluster?

July 18, 2018
By
Randomize by, or within, cluster?

I am involved with a stepped-wedge designed study that is exploring whether we can improve care for patients with end-stage disease who show up in the emergency room. The plan is to train nurses and physicians in palliative care. (A while ago, I described what the stepped wedge design is.) Under this design, 33 sites around the country will receive...

Read more »

How the odds ratio confounds: a brief study in a few colorful figures

July 9, 2018
By
How the odds ratio confounds: a brief study in a few colorful figures

The odds ratio always confounds: while it may be constant across different groups or clusters, the risk ratios or risk differences across those groups may vary quite substantially. This makes it really hard to interpret an effect. And then there is inconsistency between marginal and conditional odds ratios, a topic I seem to be visiting frequently, most recently last...

Read more »

Re-referencing factor levels to estimate standard errors when there is interaction turns out to be a really simple solution

June 25, 2018
By
Re-referencing factor levels to estimate standard errors when there is interaction turns out to be a really simple solution

Maybe this should be filed under topics that are so obvious that it is not worth writing about. But, I hate to let a good simulation just sit on my computer. I was recently working on a paper investigating the relationship of emotion knowledge (EK) in very young kids with academic performance a year or two later. The idea...

Read more »

Search R-bloggers


Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)