# Monthly Archives: May 2013

## Exploratory Data Analysis: Variations of Box Plots in R for Ozone Concentrations in New York City and Ozonopolis

Introduction Last week, I wrote the first post in a series on exploratory data analysis (EDA).  I began by calculating summary statistics on a univariate data set of ozone concentration in New York City in the built-in data set “airquality” in R.  In particular, I talked about how to calculate those statistics when the data

## Using R to visualize geo optimization algorithms

May 26, 2013
By

Site optimization is the process of finding an optimal location for a plant or a warehouse to minimize transportation costs and duration. A simple model only consists of one good and no restrictions regarding transportation capacities or delivery time. The optimizing algorithms are often hard to understand. Fortunately, R is a great tool to make them more comprehensible.The basic...

## Creating a typical textbook illustration of statistical power using either ggplot or base graphics

May 26, 2013
By
$Creating a typical textbook illustration of statistical power using either ggplot or base graphics$

A common way of illustrating the idea behind statistical power in null hypothesis significance testing, is by plotting the sampling distributions of the null hypothesis and the alternative hypothesis. Typically, these illustrations highlight the regions that correspond to making a type II error, type I error and correctly rejecting the null hypothesis (i.e. the test's power). In this post...

## Creating a typical textbook illustration of statistical power using either ggplot or base graphics

May 26, 2013
By

A common way of illustrating the idea behind statistical power in null hypothesis significance testing, is by plotting the sampling distributions of the null hypothesis (\$ H_0 \$) and the alternative hypothesis (\$ H_A \$). Typically, these illustrations highlight the regions that correspond to making a type II error (\$ beta \$), type I...

## More bubble sort tuning

May 26, 2013
By

After last week's post bubble sort tuning I got an email from Berend Hasselman noting that my 'best' function did not protect against cases n<=2 and a speed improvement was possible. That made me realize that I should have been profiling t...

## Test Drive of Parallel Computing with R

May 25, 2013
By

Today, I did a test run of parallel computing with snow and multicore packages in R and compared the parallelism with the single-thread lapply() function. In the test code below, a data.frame with 20M rows is simulated in a Ubuntu VM with 8-core CPU and 10-G memory. As the baseline, lapply() function is employed to

## Revisiting text processing with R and Python

May 25, 2013
By

Back in 2011, I covered the relative performance difference of the most popular libraries for text processing in R and Python.   In case you can’t guess the answer, Python and NLTK  won by a significant margin over R and… Read more ›

## Speed trick: Assigning large object NULL is much faster than using rm()!

May 25, 2013
By

When processing large data sets in R you often also end up creating large temporary objects. In order to keep the memory footprint small, it is always good to remove those temporary objects as soon as possible. When done, removed objects will be deallocated from memory (RAM) the next time the garbage collection runs. Better: Use rm(list="x")...

## HOWTO: X11 Forwarding for Oracle R Enterprise

May 25, 2013
By

v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US X-NONE X-NONE ...

## Sentiment analysis finds trouble in the Enron emails

May 24, 2013
By

The Enron email dataset, collected during the FERC investigation of the Enron financial scandal, represents the largest publicly available set of emails. This makes theman ideal testbed for sentiment analysis algorithms. Ikanow's Andrew Strite used the open-source Infinit.e framework and a Hadoop cluster to generate sentiment scores for all of the Enron emails, and then used R to manipulate...