This article from my other blog may be of interest to readers of this blog: http://seriousstats.wordpress.com/2013/04/18/using-multilevel-models-to-get-accurate-inferences-for-repeated-measures-anova-designs/

This article from my other blog may be of interest to readers of this blog: http://seriousstats.wordpress.com/2013/04/18/using-multilevel-models-to-get-accurate-inferences-for-repeated-measures-anova-designs/

A while ago I was playing around with the JavaScript package D3.js, and I began with this visualization—that I never really finished—of how a one-way ANOVA is calculated. I wanted to make the visualization interactive, and I did integrate some interactive elements. For instance, if you hover over a data point it will show the residual, and its value will be highlighted in...

It is now increasingly common for experimental psychologists (among others) to use multilevel models (also known as linear mixed models) to analyze data that used to be shoe-horned into a repeated measures ANOVA design. Chapter 18 of Serious Stats introduces multilevel models by considering them as an extension of repeated measures ANOVA models that can

R’s formula interface is sweet but sometimes confusing. ANOVA is seldom sweet and almost always confusing. And random (a.k.a. mixed) versus fixed effects decisions seem to hurt peoples’ heads too. So, let’s dive into the intersection of these three. I’m aware that there are lots of packages for running ANOVA models that make things nicer

N-Way ANOVA example Two-way analysis of variance is where the rubber hits the road, so to speak. This extends the concepts of ANOVA with only one factor to two factors. When there are two factors this means that there can be an interaction between the two factors that should be tested. As one might expect

One-Way ANOVA Analysis of variance is a tool used for a variety of purposes. Applications range from a common one-way ANOVA, to experimental blocking, to more complex nested designs. This first ANOVA example provides the necessary tools to analyze data using this technique. This example will show a basic one-way ANOVA. I will save the

In a previous post I showed how to plot difference-adjusted CIs for between-subjects (independent measures) ANOVA designs (see here). The rationale behind this kind of graphical display is introduced in Chapter 3 of Serious stats (and summarized in my earlier blog post). In a between-subjects – or in indeed in a within-subjects (repeated measures) – design

e-mails with the latest R posts.

(You will not see this message again.)