Cost Weighted Logistic Loss

December 15, 2016
By

(This article was first published on R – My contRibution, and kindly contributed to R-bloggers)

The problem of weighting the type 1,2 errors on binary classification came up in a forum I visit.

My solution:

# normal log-loss
ll <- function(y) function(p) -(y * log(p) + (1-y)*log(1-p))

plot(ll(0),0,1,col=1,main="log loss",ylab="loss",xlab="p")
plot(ll(1),0,1,col=2,add=TRUE)
legend("topleft",legend = c("y=0","y=1"), lty=1, col=1:2, bty="n")

# cost weighted log-loss
cwll <- function(y,cost) function(p) -(cost * y * log(p) + (1-cost)*(1-y)*log(1-p))

plot(cwll(0,0.1),0,1,col=1,main="cost weighted log loss\n(cost=0.1)",ylab="loss",xlab="p")
plot(cwll(1,0.1),0,1,col=2,add=TRUE)
legend("topleft",legend = c("y=0","y=1"), lty=1, col=1:2, bty="n")

Here we can see the different loss behaviours

plot-log-loss
rplot-cw-log-loss

We will try to classify the Virginica species from the iris dataset

# let's take the iris data set with a species that is hard to differentiate by sepal length and petal length
d <- transform(iris, y = Species == "virginica")
plot(Sepal.Length~Petal.Length,data=d,col=0,pch=21,bg=rgb(0,y,0), main="is it Virginica?")
legend("topleft",legend=c("virginica","others"),pch=21,col=0,pt.bg=c("green","black"),bty="n")

 

rplot-virignica

And now the loss functions:

# normal loss function
Loss <- function(par, data) {
xb <- cbind(1,d$Sepal.Length, d$Petal.Length) %*% par
p <- 1 / (1 + exp(-xb))
sum(-(d$y * log(p) + (1-d$y)*log(1-p)))
}
# cost weighted version, cost refers to error on the virginica species
cwLoss <- function(par, data, cost = 0.01) {
xb <- cbind(1,d$Sepal.Length, d$Petal.Length) %*% par
p <- 1 / (1 + exp(-xb))
sum(-(cost * d$y * log(p) + (1-cost)*(1-d$y)*log(1-p)))
}

beta <- optim(par=c(0,0,0),fn=Loss,data=d)$par
cw.beta <- optim(par=c(0,0,0),fn=cwLoss,data=d)$par

xRange <- range(d$Petal.Length)
yRange <- range(d$Sepal.Length)
X <- seq(xRange[1],xRange[2],by = 0.05)
Y <- seq(yRange[1],yRange[2],by = 0.05)
z <- outer(X,Y, FUN = function(x,y) -(beta[1] + x * beta[3] + y * beta[2]))
cwz <- outer(X,Y, FUN = function(x,y) -(cw.beta[1] + x * cw.beta[3] + y * cw.beta[2]))

contour(X,Y,z, add=TRUE,levels = 0,labels = "normal",labcex = 1)
contour(X,Y,cwz, add=TRUE,levels = 0,col=4, labels = "cost-weighted",labcex = 1)

Plot-Cost-weighted -resutlts.png

To leave a comment for the author, please follow the link and comment on their blog: R – My contRibution.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)