BMR: Bayesian Macroeconometrics in R

September 4, 2012

(This article was first published on DiffusePrioR » R, and kindly contributed to R-bloggers)

The recently released BMR package, short for Bayesian Macroeconometrics with R, provides a comprehensive set of powerful routines that estimate Bayesian Vector Autoregression (VAR) and Dynamic Stochastic General Equilibrium (DSGE) models in R.

The procedure of estimating both Bayesian VAR and DSGE models can represent a great computational burden. However, BMR removes a lot of this burden, performing the most computationally demanding procedures using C++, which is ported into R with the Rcpp package in a manner similar to that of the recently released STAN package.

Despite the complexity of these models, the package itself is very easy to use. Furthermore, the package’s author has provided an awesome vignette that explains both the theory underlining these models, and examples of their use.

To leave a comment for the author, please follow the link and comment on their blog: DiffusePrioR » R. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)