(This article was first published on

**Statistic on aiR**, and kindly contributed to R-bloggers)This is the code to perform the Bhapkar V test. I’ve rapidly wrote it, in 2 hours. The code is then quite *brutal* and it could be done better. As soon as possible, I will correct it.

WARNING: it works *ONLY* with 3 groups, for now!

bhapkar.test.3g <- function(data1=list){

sample <- c()

for(i in 1:length(data1)){

sample <- c(sample, rep(i, length(data1[[i]])))

}

obs <- c()

for(i in 1:length(data1)){

obs <- c(obs, data1[[i]])

}

rank <- rank(obs)

cplets <- list()

vec <- c()

for(i in 1:length(data1[[1]])){

vec <- c(vec, (length(data1[[2]][data1[[2]]>data1[[1]][i]]) * length(data1[[3]][data1[[3]]>data1[[1]][i]])))

}

cplets[[1]] <- vec

vec <- c()

for(i in 1:length(data1[[2]])){

vec <- c(vec, (length(data1[[1]][data1[[1]]>data1[[2]][i]]) * length(data1[[3]][data1[[3]]>data1[[2]][i]])))

}

cplets[[2]] <- vec

vec <- c()

for(i in 1:length(data1[[3]])){

vec <- c(vec, (length(data1[[2]][data1[[2]]>data1[[3]][i]]) * length(data1[[1]][data1[[1]]>data1[[3]][i]])))

}

cplets[[3]] <- vec

cplets1 <- c(cplets[[1]], cplets[[2]], cplets[[3]])

mydata <- data.frame(obs=obs, sample=sample, rank=rank, cplets=cplets1)

v1 <- sum(cplets[[1]])

v2 <- sum(cplets[[2]])

v3 <- sum(cplets[[3]])

vtot <- v1+v2+v3

u1 <- v1/vtot

u2 <- v2/vtot

u3 <- v3/vtot

u <- c(u1,u2,u3)

lengths <- c(length(data1[[1]]), length(data1[[2]]), length(data1[[3]]))

N <- sum(lengths)

P <- c(lengths / N)

ngroup <- length(data1)

V <- N * (2*length(data1)-1)* (sum(P*((u-1/ngroup)^2)) - (sum(P*((u-1/ngroup))))^2)

prop <- pchisq(V, df=length(data1)-1)

names(V) = "V = "

method = "Bhapkar V-test"

rval <- list(method = method, statistic = V, p.value = prop)

class(rval) = "htest"

return(rval)

}

An example:

a <- c(42, 46, 48.5, 49, 68, 51)

b <- c(70.5, 54, 60,72)

c <- c(66, 54, 43, 105, 94)

mydata <- list(a,b,c)

bhapkar.test.3g(mydata)

Bhapkar V-test

data:

V = 6.7713, p-value = 0.9661

**REFERENCES**:*Statistical analysis of nonnormal data*

By J. V. Deshpande, A. P. Gore, A. Shanubhogue

pag. 61

To

**leave a comment**for the author, please follow the link and comment on their blog:**Statistic on aiR**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...