Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The post Replace NA with Zero in R appeared first on Data Science Tutorials

Replace NA with Zero in R, Using the dplyr package in R, you can use the following syntax to replace all NA values with zero in a data frame.

Substitute zero for any NA values.

Create new variables from existing variables in R – Data Science Tutorials

`df <- df %>% replace(is.na(.), 0)`

To replace NA values in a particular column of a data frame, use the following syntax:

In column col1, replace NA values with zero.

`df <- df %>% mutate(col1 = ifelse(is.na(col1), 0, col1))`

Additionally, you can substitute a NA value in one of a data frame’s several columns using the following syntax.

Test for Normal Distribution in R-Quick Guide – Data Science Tutorials

in columns col1 and col2, replace NA values with zero

```df <- df %>% mutate(col1 = ifelse(is.na(col1), 0, col1),
col2 = ifelse(is.na(col2), 0, col2))```

With the help of the following data frame, the following examples demonstrate how to utilize these functions in practice.

Let’s create a data frame

```df <- data.frame(team = c('T1', 'T1', 'T1', 'T2', 'T2', 'T2', 'T2'),
position = c('R1', NA, 'R1', 'R1', 'R1', 'R1', 'R2'),
points = c(122, 135, 129, NA, 334, 434, 139))```

Now we can view the data frame

How to Filter Rows In R? – Data Science Tutorials

```df
team position points
1   T1       R1    122
2   T1     <NA>    135
3   T1       R1    129
4   T2       R1     NA
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139```

## Example 1: Replace every NA value across all columns.

Replace all NA values across all columns of a data frame by running the code below.

`library(dplyr)`

Yes, now we will replace all NA values with zero

`df <- df %>% replace(is.na(.), 0)`

Let’s view the data frame

```df
team position points
1   T1       R1    122
2   T1        0    135
3   T1       R1    129
4   T2       R1      0
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139```

## Example 2: In a Specific Column, Replace NA Values

The code below demonstrates how to change NA values in a particular column of a data frame.

One sample proportion test in R-Complete Guide (datasciencetut.com)

`library(dplyr)`

replace NA values with zero in position column only

```df %>% mutate(position = ifelse(is.na(position), 0, position))
team position points
1   T1       R1    122
2   T1        0    135
3   T1       R1    129
4   T2       R1     NA
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139```

## Example 3: Replace any columns with NA values.

The code that follows demonstrates how to change NA values in one of a data frame’s many columns.

`library(dplyr)`

Now we can replace NA values with zero in position and points columns

What Is the Best Way to Filter by Date in R? – Data Science Tutorials

```df %>% mutate(position = ifelse(is.na(position), 0, position),
points = ifelse(is.na(points), 0, points))
team position points
1   T1       R1    122
2   T1        0    135
3   T1       R1    129
4   T2       R1      0
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139```

Using the dplyr package in R, you can use the following syntax to replace all NA values with zero in a data frame.

Substitute zero for any NA values.

`df <- df %>% replace(is.na(.), 0)`

To replace NA values in a particular column of a data frame, use the following syntax:

In column col1, replace NA values with zero.

`df <- df %>% mutate(col1 = ifelse(is.na(col1), 0, col1))`

Additionally, you can substitute a NA value in one of a data frame’s several columns using the following syntax.

How to make a rounded corner bar plot in R? – Data Science Tutorials

in columns col1 and col2, replace NA values with zero

```df <- df %>% mutate(col1 = ifelse(is.na(col1), 0, col1),
col2 = ifelse(is.na(col2), 0, col2))```

With the help of the following data frame, the following examples demonstrate how to utilize these functions in practice:

Let’s create a data frame

```df <- data.frame(team = c('T1', 'T1', 'T1', 'T2', 'T2', 'T2', 'T2'),
position = c('R1', NA, 'R1', 'R1', 'R1', 'R1', 'R2'),
points = c(122, 135, 129, NA, 334, 434, 139))```

Now we can view the data frame

```df
team position points
1   T1       R1    122
2   T1     <NA>    135
3   T1       R1    129
4   T2       R1     NA
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139```

## Example 1: Replace every NA value across all columns.

Replace all NA values across all columns of a data frame by running the code below.

Best Data Science YouTube Tutorials Free to Learn – Data Science Tutorials

library(dplyr)

Yes, now we will replace all NA values with zero

`df <- df %>% replace(is.na(.), 0)`

Let’s view the data frame

```df
team position points
1   T1       R1    122
2   T1        0    135
3   T1       R1    129
4   T2       R1      0
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139```

## Example 2: In a Specific Column, Replace NA Values

The code below demonstrates how to change NA values in a particular column of a data frame:

`library(dplyr)`

replace NA values with zero in position column only

```df %>% mutate(position = ifelse(is.na(position), 0, position))
team position points
1   T1       R1    122
2   T1        0    135
3   T1       R1    129
4   T2       R1     NA
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139```

## Example 3: Replace any columns with NA values.

The code that follows demonstrates how to change NA values in one of a data frame’s many columns.

`library(dplyr)`

Now we can replace NA values with zero in position and points columns

```df %>% mutate(position = ifelse(is.na(position), 0, position),
points = ifelse(is.na(points), 0, points))
team position points
1   T1       R1    122
2   T1        0    135
3   T1       R1    129
4   T2       R1      0
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139```

The post Replace NA with Zero in R appeared first on Data Science Tutorials