[This article was first published on K & L Fintech Modeling, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
This post shows how to use nloptr R package to solve non-linear optimization problem with or without equality or inequality constraints. Nelson-Siegel yield curve model is used as an target example.

# Nelson-Siegel model using nloptr R package

In this post, the non-linear least squares problem is solved by using nloptr R package. As a proper example, Nelson-Siegel model is used as it is a representative non-linear problem in financial application.

For your information, this blog has dealt with Nelson-Siegel model as follows.

### Nelson-Siegel model as a non-linear optimization problem

Nelson-Siegel model is a non-linear least square problem with 4 parameters with some inequality constraints.
\begin{align} y(\tau) &= \beta_1 + \beta_2 \left( \frac{1-e^{- \tau \lambda }}{\tau \lambda }\right) \\ &+ \beta_3 \left(\frac{1-e^{- \tau \lambda }}{\tau \lambda }-e^{- \tau \lambda }\right) \\ \\ &\beta_1 > 0, \beta_1 + \beta_2 >0, \lambda > 0 \end{align}
Here, $$\tau$$ is a maturity and $$y(\tau)$$ is a continuously compounded spot rate with $$\tau$$ maturity. $$\beta_1, \beta_2, \beta_3$$ are coefficient parameters and $$\lambda$$ is the time decay parameter.

### nloptr() function

After installing nloptr R package, nloptr() function with the following specification is available to use.

 12345678910 nloptr(    x0          = initial guess,    eval_f      = objective function,     lb          = lower bounds,    ub          = upper bounds,     eval_grad_f = gradient function,      eval_g_ineq = inequality constraints,      eval_g_eq   = equality constraints,    opts        = optimization options) Colored by Color Scripter cs

As the names of arguments indicate, we can understand the meanings of each arguments. Here, initial guesses, objective function, lower and upper bounds, options must be provided but the rest are optional.

### Options

nloptr() function should takes opts as an argument since at least algorithm is needed to be provided. nloptr R package provides a list of algorithms, which are categorized into two classes : with and without gradient.

As there are many algorithms included in this package, for the detailed information of algorithms or other settings, refer to https://nlopt.readthedocs.io/en/latest/.

In particular, if the number of evaluation is too small, the non-linear optimization result tends to be poor so that “maxeval” is set be larger and also “xtol_rel” is set smaller to avoid local minima. In this perspective, I set maxeval=500000 and xtol_rel=1.0e-16.

 123456 opts <– list(    “algorithm”   = “NLOPT_GN_ISRES”,    “xtol_rel”    = 1.0e-16,    “maxeval”     = 500000,    “print_level” = 1 ) Colored by Color Scripter cs

I used minimal options. If you try to perform the full-fledged optimization work, you need to apply additional settings to options.

### R code

The R code below estimate parameters of Nelson-Siegel model with two observations of yield curve. It is worth noting that when an objective function has additional arguments such as data or maturities, these are included in nloptr() function like optim() function.

 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 #========================================================## Quantitative ALM, Financial Econometrics & Derivatives # ML/DL using R, Python, Tensorflow by Sang-Heon Lee ## https://kiandlee.blogspot.com#——————————————————–## Nelson-Siegel using nloptr function#========================================================# graphics.off(); rm(list = ls()) library(nloptr) #———————————————–# objective function#———————————————–    objfunc <– function(para, y, m) {        beta <– para[1:3]; la <– para[4]        C  <– cbind(            rep(1,length(m)),                (1–exp(–la*m))/(la*m),                         (1–exp(–la*m))/(la*m)–exp(–la*m))        return(sqrt(mean((y – C%*%beta)^2)))    } #———————————————–# constraint function ( <= : less than equal )#———————————————–    # beta0 + beta1 > 0    constfunc <– function(para, y, m) {        beta  <– para[1:3]        lhs   <– –beta[1]–beta[2]        return(lhs)    }  #=======================================================# 1. Read data#=======================================================        # b1, b2, b3, lambda, rmse for comparisons    ns_reg_para_rmse1 <– c(        4.26219396, –4.08609206, –4.90893865,          0.02722607,  0.04883786)    ns_reg_para_rmse2 <– c(        4.97628654, –4.75365297, –6.40263059,          0.05046789,  0.04157326)        str.zero <– “        mat     rate1      rate2        3       0.0781     0.0591        6       0.1192     0.0931        9       0.1579     0.1270        12      0.1893     0.1654        24      0.2669     0.3919        36      0.3831     0.8192        48      0.5489     1.3242        60      0.7371     1.7623        72      0.9523     2.1495        84      1.1936     2.4994        96      1.4275     2.7740        108     1.6424     2.9798        120     1.8326     3.1662        144     2.1715     3.4829        180     2.5489     3.7827        240     2.8093     3.9696″        df <– read.table(text = str.zero, header=TRUE)    m  <– df$mat y1 <– df$rate1; y2 <– df$rate2 #=======================================================# 2. Nonlinear least squares with constraints#======================================================= # Set optimization options. opts <– list(“algorithm” = “NLOPT_GN_ISRES”, “xtol_rel” = 1.0e–16, “maxeval” = 500000, “print_level” = 1 ) #——————————————— # NS estimation with 1st data #——————————————— y <– y1 x_init <– c(y[16], y[1]–y[16], 2*y[6]–y[1]–y[16], 0.0609) m_nloptr <– nloptr( x0 = x_init, y = y, m = m, eval_f = objfunc, eval_g_ineq = constfunc, # beta0 > 0, 0.01 < lambda < 0.1 lb = c( 0,–30,–30, 0.001), ub = c(30, 30, 30, 0.1), opts = opts ) ns_nloptr_out1 <– c(m_nloptr$solution,                         m_nloptr$objective) #——————————————— # NS estimation with 2nd data #——————————————— y <– y2 x_init <– c(y[16], y[1]–y[16], 2*y[6]–y[1]–y[16], 0.0609) m_nloptr <– nloptr( x0 = x_init, y = y, m = m, eval_f = objfunc, eval_g_ineq = constfunc, # beta0 > 0, 0.01 < lambda < 0.1 lb = c( 0,–30,–30, 0.001), ub = c(30, 30, 30, 0.1), opts = opts ) ns_nloptr_out2 <– c(m_nloptr$solution,                         m_nloptr\$objective)     #=======================================================# 3. Results and Comparisons#=======================================================        ns_reg_para_rmse1    ns_nloptr_out1        ns_reg_para_rmse2    ns_nloptr_out2    Colored by Color Scripter cs

The following estimation results show that non-linear optimization results from nloptr are close to the answers.

Using these estimated parameters at two dates, fitted yield curves are generated as follows.

### Concluding Remarks

This post shows how to use nloptr R package to perform non-linear optimization problem with or without equality or inequality constraints. In fact, as non-linear optimization is vulnerable to the type or magnitude of constraints, careful consideration is needed to handle this kind of problem. $$\blacksquare$$

To leave a comment for the author, please follow the link and comment on their blog: K & L Fintech Modeling.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

# Never miss an update! Subscribe to R-bloggers to receive e-mails with the latest R posts.(You will not see this message again.)

Click here to close (This popup will not appear again)