# Faster Multivariate Normal densities with RcppArmadillo and OpenMP

**Rcpp Gallery**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The Multivariate Normal density function is used frequently in a number of problems. Especially for MCMC problems, fast evaluation is important. Multivariate Normal Likelihoods, Priors and mixtures of Multivariate Normals require numerous evaluations, thus speed of computation is vital. We show a twofold increase in speed by using RcppArmadillo, and some extra gain by using OpenMP.

This project is based on this StackOverflow post.

Loading necessary packages:

libs <- c("mvtnorm","RcppArmadillo","rbenchmark","bayesm","parallel") if (sum(!(libs %in% .packages(all.available = TRUE))) > 0) { install.packages(libs[!(libs %in% .packages(all.available = TRUE))]) } for (i in 1:length(libs)) { library(libs[i],character.only = TRUE,quietly=TRUE) }

First, we show the RcppArmadillo implementation without OpenMP.

#include// [[Rcpp::depends(RcppArmadillo)]] // [[Rcpp::export]] arma::vec Mahalanobis(arma::mat x, arma::rowvec center, arma::mat cov){ int n = x.n_rows; arma::mat x_cen; x_cen.copy_size(x); for (int i=0; i < n; i++) { x_cen.row(i) = x.row(i) - center; } return sum((x_cen * cov.i()) % x_cen, 1); } // [[Rcpp::export]] arma::vec dmvnorm_arma(arma::mat x, arma::rowvec mean, arma::mat sigma, bool log = false) { arma::vec distval = Mahalanobis(x, mean, sigma); double logdet = sum(arma::log(arma::eig_sym(sigma))); double log2pi = std::log(2.0 * M_PI); arma::vec logretval = -( (x.n_cols * log2pi + logdet + distval)/2 ) ; if (log){ return(logretval); }else { return(exp(logretval)); } }

Now we simulate some data for benchmarking:

set.seed(42) sigma <- rwishart(10,diag(4))$IW means <- rnorm(4) X <- rmvnorm(500000, means, sigma)

And run benchmark:

benchmark(mvtnorm::dmvnorm(X,means,sigma), dmvnorm_arma(X,means,sigma), order="relative", replications=50)[,1:4] test replications elapsed relative 2 dmvnorm_arma(X, means, sigma) 50 3.378 1.000 1 mvtnorm::dmvnorm(X, means, sigma) 50 6.933 2.052

For the OpenMP implementation, we need to enable OpenMP support. One way of doing so is by adding the required compiler and linker flags as follows:

Sys.setenv("PKG_CXXFLAGS"="-fopenmp") Sys.setenv("PKG_LIBS"="-fopenmp")

Forthcoming Rcpp releases will also be able to use the ‘openmp’ plugin which has been added in SVN.

The source code only changes slightly. A dynamic schedule has been chosen for OpenMP, although a static schedule might be faster in some cases. This is left to further experimentation.

#include#include // [[Rcpp::depends(RcppArmadillo)]] // [[Rcpp::export]] arma::vec Mahalanobis_mc(arma::mat x, arma::rowvec center, arma::mat cov, int cores=1){ omp_set_num_threads( cores ); int n = x.n_rows; arma::mat x_cen; x_cen.copy_size(x); #pragma omp parallel for schedule(dynamic) for (int i=0; i < n; i++) { x_cen.row(i) = x.row(i) - center; } return sum((x_cen * cov.i()) % x_cen, 1); } // [[Rcpp::export]] arma::vec dmvnorm_arma_mc ( arma::mat x, arma::rowvec mean, arma::mat sigma, bool log = false, int cores=1){ arma::vec distval = Mahalanobis_mc(x, mean, sigma, cores); double logdet = sum(arma::log(arma::eig_sym(sigma))); double log2pi = std::log(2.0 * M_PI); arma::vec logretval = - ((x.n_cols * log2pi + logdet + distval)/2); if (log) { return(logretval); } else { return(exp(logretval)); } }

We need to set the number of cores to be used.

cores <- detectCores()

Now we are ready to benchmark again. The speed gain of the OpenMP version is not big, but noticable.

benchmark(mvtnorm::dmvnorm(X,means,sigma), dmvnorm_arma(X,means,sigma) , dmvnorm_arma_mc(X,means,sigma, cores), order="relative", replications=50)[,1:4] test replications elapsed relative 3 dmvnorm_arma_mc(X, means, sigma, cores) 50 2.726 1.000 2 dmvnorm_arma(X, means, sigma) 50 3.265 1.198 1 mvtnorm::dmvnorm(X, means, sigma) 50 8.238 3.022

The use of RcppArmadillo brings about a significant increase in speed. The addition of OpenMP leads to only little additional performance. The largest share of the increase in speed is due to faster computation of the Mahalanobis distance, which is used to compute the Multivariate Normal density.

**leave a comment**for the author, please follow the link and comment on their blog:

**Rcpp Gallery**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.