Evolution average number of beds per hospital

[This article was first published on FishyOperations » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The OECD collects (among a lot of other statistics) information on the number of hospitals and hospital beds per country. These two parameters combined and its evolution over the years could give an indication on whether or not the country’s hospital landscape is evolving towards large medical centers, small scale hospital settings or whether there is no trend to detect.

In the graph below you can see the evolution of the average number of beds per hospital for a number of countries. The first datapoint for every country serves as a reference point and equals 100 percent. A point above this reference point denotes an increase in the average numbers of beds per hospital. In contrast, a point below the reference point means a decrease in the average number of bed per hospital. Of course, a decrease/increase could mean an country-wide decrease/increase in the number of beds. However, assuming that in these ‘developed’ countries there would be no drastic sudden changes in total number of hospital beds, a continuous increase might indicate that the country’s hospital landscape is evolving towards large scale medical centers (through for example mergers & acquisitions).

Even though no solid conclusion can be drawn from the two parameters at hand, countries like Greece, Finland, Ireland, Luxembourg, The Netherlands, New Zealand and Turkey do seem to be evolving towards a healthcare landscape with large scale medical centers. Conversely, Estonia, Italy, Korea, Poland, The Slovak Republic and Slovenia seem to evolve towards smaller scale hospitals.

The R script to generate the graph:


hospitals<-subset(dataset, Variable=='Hospitals')
hospitalbeds<-subset(dataset, Variable=='Total hospital beds')

dataset_new<-merge(hospitals, hospitalbeds, by=c('Country', 'Year'))

ratioperc<-function(ratio, country){
	value<-ratio/dataset_new[dataset_new$Year==min(dataset_new[ dataset_new$Country==country, 'Year'])&dataset_new$Country== country, 'ratio']
	if(length(value)==0) return(NA)
	else return(value)

dataset_transform<-ddply(dataset_new, .(Country, Year), transform, refvalue=ratioperc(ratio, Country))

ggplot(dataset_transform, aes(x=Year, y=refvalue, group=Country, colour=refvalue)) + geom_line() + geom_point() + facet_wrap(~Country, ncol=4) + opts(axis.text.x=theme_text(angle=-90, hjust=0), legend.position='none') + scale_colour_gradient(low='blue', high='orange') + ylab('')

The .csv file used: hospitaldata.csv (source: oecd.org)

The post Evolution average number of beds per hospital appeared first on FishyOperations.

To leave a comment for the author, please follow the link and comment on their blog: FishyOperations » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)