Maximum Loss and Mean-Absolute Deviation risk measures

[This article was first published on Systematic Investor » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

During construction of typical efficient frontier, risk is usually measured by the standard deviation of the portfolio’s return. Maximum Loss and Mean-Absolute Deviation are alternative measures of risk that I will use to construct efficient frontier. I will use methods presented in Comparative Analysis of Linear Portfolio Rebalancing Strategies: An Application to Hedge Funds by Krokhmal, P., S. Uryasev, and G. Zrazhevsky (2001) paper to construct optimal portfolios.

Let x.i, i= 1,…,n be weights of instruments in the portfolio. We suppose that j= 1,…,T scenarios of returns with equal probabilities are available. I will use historical assets returns as scenarios. Let us denote by r.ij the return of i-th asset in the scenario j. The portfolio’s Maximum Loss (page 34) can be written as

\max_{1\leq j \leq T}\left \{ -\sum_{i=1}^{n}r_{ij}x_i \right \}

It can be formulated as a linear programming problem

\min_{}{}w\newline\newline-\sum_{i=1}^{n}r_{ij}x_j\leq w , j=1,...,T

This linear programming problem can be easily implemented

min.maxloss.portfolio <- function
(
	ia,				# input assumptions
	constraints		# constraints
)
{
	n = ia$n
	nt = nrow(ia$hist.returns)

	# objective : maximum loss, w
	f.obj = c( rep(0, n), 1)

	# adjust prior constraints, add w
	f.con = rbind(constraints$A, 0)
	f.dir = c(rep('=', constraints$meq), rep('>=', len(constraints$b) - constraints$meq))
	f.rhs = constraints$b

	# -SUM <over i> r.ij * x.i <= w, for each j from 1 ... T
	a1 = rbind( matrix(0, n, nt), 0)
	b1 = rep(0, nt)
		a1[1:n,] = t(ia$hist.returns)
		a1[(n + 1),] = +1		# w

	f.con = cbind( f.con, a1 )
	f.dir = c(f.dir, rep('>=', nt))
	f.rhs = c(f.rhs, b1)	

	# find optimal solution
	x = NA
	sol = try(lp.anyx('min', f.obj, t(f.con), f.dir, f.rhs, -100), TRUE)

	if(!inherits(sol, 'try-error')) {
		x = sol$solution[1:n]

	}

	return( x )
}

The portfolio’s Mean-Absolute Deviation (MAD) (page 33) can be written as

\frac{1}{T}\sum_{j=1}^{T}\left | \sum_{i=1}^{n}r_{ij}x_{i} - \frac{1}{T}\sum_{k=1}^{T}\sum_{i=1}^{n}r_{ik}x_{i} \right |

It can be formulated as a linear programming problem

\min_{}{}\frac{1}{T}\sum_{j=1}^{T}(u_{j}^{+}+u_{j}^{-})\newline\newline \sum_{i=1}^{n}r_{ij}x_{i} - \frac{1}{T}\sum_{j=1}^{T}\sum_{i=1}^{n}r_{ij}x_{i}=u_{j}^{+}-u_{j}^{-}, j=1,...,T\newline\newline u_{j}^{+},u_{j}^{-} \geq 0, j=1,...,T

This linear programming problem can be implemented

min.mad.portfolio (
	ia,			# input assumptions
	constraints		# constraints
)
{
	n = ia$n
	nt = nrow(ia$hist.returns)

	# objective : Mean-Absolute Deviation (MAD)
	# 1/T * [ SUM  (u+.j + u-.j) ]
	f.obj = c( rep(0, n), (1/nt) * rep(1, 2 * nt) )

	# adjust prior constraints, add u+.j, u-.j
	f.con = rbind( constraints$A, matrix(0, 2 * nt, ncol(constraints$A) ) )
	f.dir = c(rep('=', constraints$meq), rep('>=', len(constraints$b) - constraints$meq))
	f.rhs = constraints$b

	# [ SUM  r.ij * x.i ] - 1/T * [ SUM  [ SUM  r.ij * x.i ] ] = u+.j - u-.j , for each j = 1,...,T
	a1 = rbind( matrix(0, n, nt), -diag(nt), diag(nt))
	b1 = rep(0, nt)
		a1[1:n,] = t(ia$hist.returns) - repmat(colMeans(ia$hist.returns), 1, nt)

	f.con = cbind( f.con, a1 )
	f.dir = c(f.dir, rep('=', nt))
	f.rhs = c(f.rhs, b1)

	# find optimal solution
	x = NA
	min.x.bounds = c( rep(-100, n), rep(0, 2 * nt) )
	sol = try(lp.anyx('min', f.obj, t(f.con), f.dir, f.rhs, min.x.bounds), TRUE)

	if(!inherits(sol, 'try-error')) {
		x = sol$solution[1:n]
	}

	return( x )
}

Let’s examine efficient frontiers computed under different risk measures using historical input assumptions presented in the Introduction to Asset Allocation post:

###############################################################################
# Create Efficient Frontier
###############################################################################
	n = ia$n

	# x.i >= 0
	constraints = new.constraints(diag(n), rep(0, n), type = '>=')

	# x.i 	constraints = add.constraints(diag(n), rep(0.8, n), type = '
	# SUM x.i = 1
	constraints = add.constraints(rep(1, n), 1, type = '=', constraints)

	# create efficient frontier(s)
	ef.risk = portopt(ia, constraints, 50, 'Risk')
	ef.maxloss = portopt(ia, constraints, 50, 'Max Loss', min.maxloss.portfolio)
	ef.mad = portopt(ia, constraints, 50, 'MAD', min.mad.portfolio)

	# Plot multiple Efficient Frontiers
	layout( matrix(1:4, nrow = 2) )
	plot.ef(ia, list(ef.risk, ef.maxloss, ef.mad), portfolio.risk, F)
	plot.ef(ia, list(ef.risk, ef.maxloss, ef.mad), portfolio.maxloss, F)
	plot.ef(ia, list(ef.risk, ef.maxloss, ef.mad), portfolio.mad, F)

	# Plot multiple Transition Maps
	layout( matrix(1:4, nrow = 2) )
	plot.transitopn.map(ef.risk)
	plot.transitopn.map(ef.maxloss)
	plot.transitopn.map(ef.mad)

The Mean-Absolute Deviation and Standard Deviation risk measures are very similar by construction – they both measure average deviation, so it is not a surprise that their efficient frontiers and transition maps are close. On the other hand, the Maximum Loss measures the extreme deviation and has very different efficient frontier and transition map.


To leave a comment for the author, please follow the link and comment on their blog: Systematic Investor » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)