The Stats Clinic

July 27, 2011
By

(This article was first published on 4D Pie Charts » R, and kindly contributed to R-bloggers)

Stats clinic logo
Here at HSL we have a lot of smart kinda-numerate people who have access to a lot of data. On a bad day, kinda-numerate includes myself, but in general I’m talking about scientists who have have done an introductory stats course, but not much else. When all you have is a t-test, suddenly everything looks like two groups of normally distributed numbers that you need to know how significantly different their means are.

While we have a pretty good cross-disciplinary setup here, the ease of calculating a mean here or a standard deviation there means that many scientists can’t resist a piece of the number crunching action. Then suddenly there’s an Excel monstrosity that nobody understands rearing its ugly head.

Management has enlightenedly decided to fund a stats clinic, so us number nerds can help out the rest of the lab without any paperwork overhead (which was the biggest reason to put off asking for help). They didn’t like my slogan, but hey, you can’t have everything.

I’m really interested to hear how other organisations deal with this issue. Let me know in the comments.


Tagged: r, stats

To leave a comment for the author, please follow the link and comment on his blog: 4D Pie Charts » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , ,

Comments are closed.