Three new domain-specific (embedded) languages with a Stan backend

January 9, 2018
By

[This article was first published on R – Statistical Modeling, Causal Inference, and Social Science, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

One is an accident. Two is a coincidence. Three is a pattern.

Perhaps it’s no coincidence that there are three new interfaces that use Stan’s C++ implementation of adaptive Hamiltonian Monte Carlo (currently an updated version of the no-U-turn sampler).

  • ScalaStan embeds a Stan-like language in Scala. It’s a Scala package largely (if not entirely written by Joe Wingbermuehle.
    [GitHub link]

  • tmbstan lets you fit TMB models with Stan. It’s an R package listing Kasper Kristensen as author.
    [CRAN link]

  • SlicStan is a “blockless” and self-optimizing version of Stan. It’s a standalone language coded in F# written by Maria Gorinova.
    [pdf language spec]

These are in contrast with systems that entirely reimplement a version of the no-U-turn sampler, such as PyMC3, ADMB, and NONMEM.

The post Three new domain-specific (embedded) languages with a Stan backend appeared first on Statistical Modeling, Causal Inference, and Social Science.

To leave a comment for the author, please follow the link and comment on their blog: R – Statistical Modeling, Causal Inference, and Social Science.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)