the Wang-Landau algorithm reaches the flat histogram in finite time

[This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Pierre Jacob and Robin Ryder (from Paris-Dauphine, CREST, and Statisfaction) have just arXived (and submitted to the Annals of Applied Probability) a neat result on the Wang-Landau algorithm. (This algorithm, which modifies the target in a sort of reweighted partioned sampling to achieve faster convergence, has always been perplexing to me.)  They show that some variations of the Wang-Landau algorithm meet the flat histogram criterion in finite time, and, just as importantly that other variations do not reach this criterion. The proof uses elegant Markov chain arguments and I hope the paper makes it through, as there are very few theoretical results on this algorithm. (Pierre also wrote recently a paper with Luke Bornn, Arnaud Doucet, and Pierre Del Moral, on An Adaptive Interacting Wang-Landau Algorithm for Automatic Density Exploration last week, with an associated R package. Not yet on CRAN.)

Filed under: R, Statistics, University life Tagged: CRAN, Markov chains, MCMC algorithms, R, Wang-Landau algorithm

To leave a comment for the author, please follow the link and comment on their blog: Xi'an's Og » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)