The beautiful R charts in London: The Information Capital

November 26, 2014
By

(This article was first published on Revolutions, and kindly contributed to R-bloggers)

If you've lived in or simply love London, a wonderful new book for your coffee-table is London: The Information Capital. In 100 beautifully-rendered charts, the book explores the data that underlies the city and its residents. To create most of these charts, geographer James Cheshire and designer Oliver Uberti relied on programs written in R. Using the R programming language not only created beautiful results, it saved time: "a couple of lines of code in R saved a day of manually drawing lines". 

Take for example From Home To Work, the graphic illustrating the typical London-area commute. R's ggplot2 package was used to draw the invidual segments as transparent lines, which when overlaid build up the overall picture of commuter flows around cities and towns. The R graphic was then imported into Adobe Illustrator to set the color palette and add annotations. (FlowingData's Nathan Yau uses a similar process.) 

InformationCapital-commute

Another example is the chart below of cycle routes in London. (We reported on an earlier version of this chart back in 2012.) As the authors note, "hundreds of thousands of line segments are plotted here, making the graphic an excellent illustration of R’s power to plot large volumes of data."

InformationCapital cycle commute

You can learn more from the authors about how R was used to create the graphics in London: The Information Capital and see several more examples at the link below. And if you'd like a copy, you can buy the book here.

London: The Information Capital / Our Process: The Coder and Designer

To leave a comment for the author, please follow the link and comment on their blog: Revolutions.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)