**Psychological Statistics**, and kindly contributed to R-bloggers)

Psych your mind has an interesting blog post on using *p* curves to detect dodgy stats in a a volume of published work (e.g., for a researcher or journal). The idea apparently comes from Uri Simonsohn (one of the authors of a recent paper on dodgy stats). The author (Michael W. Kraus) bravely plotted and published his own *p* curve – which looks reasonably ‘healthy’. However, he makes an interesting point – which is that we don’t know how useful these curves are in practice – which depends among other things on the variability inherent in the profile of *p* values.

I quickly threw together a simulation to address this in R. It is pretty limited (as I don’t have much time right now), but potentially interesting. It simulates independent *t* test *p* values where the samples are drawn from independent, normal distributions with equal variances but different means (and *n* = 25 per group). The population standardized effect size is fixed at *d* = 0.5 (as psychology research generally reports median effect sizes around this value). Fixing the parameters is unrealistic, but is perhaps OK for a quick simulation.

I ran this several times and plotted *p* curves (really just histograms with bins collecting *p* values at relevant intervals). First I plotted for an early career researcher with just a few publications reporting 50 *p* values. I then repeated for more experienced researchers with *n* = 100 or *n* = 500 published *p* values.

Here are the 15 random plots for 50 *p* values:

*p*= .04 and .05 (exactly where dodgy practices would tend to push the

*p*values).

*p*values?

*p*values to be pretty confidence of a nice flat pattern between

*p*= .01 and

*p*= .06. Varying the effect size and other parameters might well inject further noise (as would adding in null effects which have a uniform distribution of

*p*values and are thus probably rather noisy).

*p*values such as

*p*< .0001). Also (going forward) fraudsters will be able to generate results to circumvent tools such as

*p*curves (if they are known to be in use).

**leave a comment**for the author, please follow the link and comment on their blog:

**Psychological Statistics**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...