roxygen2 4.0.1

May 19, 2014

(This article was first published on RStudio Blog, and kindly contributed to R-bloggers)

We’re pleased to announce a new version of roxygen2. Roxygen2 allows you to write documentation comments that are automatically converted to R’s standard Rd format, saving you time and reducing duplication. This release is a major update that provides enhanced error handling and considerably safer default behaviour. Roxygen2 now adds a comment to all generated files so that you know they shouldn’t be edited by hand. This also ensures that roxygen2 will never overwrite a file that it did not create, and can automatically remove files that are no longer needed.

I’ve also written some vignettes to help you understand how to use roxygen2. Six new vignettes provide a comprehensive overview of using roxygen2 in practice. Run browseVignettes("roxygen2") to read them. In an effort to make roxygen2 easier to use and more consistent between package authors, I’ve made parsing considerably stricter, and made sure that all errors give you the line number of the associated roxygen block. Every input is now checked to make sure that it has (e.g. every { has a matching }). This should prevent frustrating errors that require careful reading of .Rd files. Similarly, @section titles and @export tags can now only span a single line as this prevents a number of common bugs.

Other features include two new tags @describeIn and @field, and you can document objects (like datasets) by documenting their name as a string. For example, to document a dataset called mydata, you can do:

#' Mydata set
#' Some data I collected about myself

To see a complete list of all bug fixes and improvements, please see the release notes for roxygen2 4.0.0 for details. Roxygen2 4.0.1 fixed a couple of minor bugs and majorly improved the upgrade process.

To leave a comment for the author, please follow the link and comment on their blog: RStudio Blog. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.


Mango solutions

RStudio homepage

Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training




CRC R books series

Six Sigma Online Training

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)