riddles on Egyptian fractions and Bernoulli factories

June 10, 2019
By

(This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers)

Two fairy different riddles on the weekend Riddler. The first one is (in fine) about Egyptian fractions: I understand the first one as

Find the Egyptian fraction decomposition of 2 into 11 distinct unit fractions that maximises the smallest fraction.

And which I cannot solve despite perusing this amazing webpage on Egyptian fractions and making some attempts at brute force  random exploration. Using Fibonacci’s greedy algorithm. I managed to find such decompositions

2 = 1 +1/2 +1/6 +1/12 +1/16 +1/20 +1/24 +1/30 +1/42 +1/48 +1/56

after seeing in this short note

2 = 1 +1/3 +1/5 +1/7 +1/9 +1/42 +1/15 +1/18 +1/30 +1/45 +1/90

And then Robin came with the following:

2 = 1 +1/4 +1/5 +1/8 +1/10 +1/12 +1/15 +1/20 +1/21 +1/24 +1/28

which may prove to be the winner! But there is even better:

2 = 1 +1/5 +1/6 +1/8 +1/9 +1/10 +1/12 +1/15 +1/18 +1/20 +1/24

The second riddle is a more straightforward Bernoulli factory problem:

Given a coin with a free-to-choose probability p of head, design an experiment with a fixed number k of draws that returns three outcomes with equal probabilities.

For which I tried a brute-force search of all possible 3-partitions of the 2-to-the-k events for a range of values of p from .01 to .5 and for k equal to 3,4,… But never getting an exact balance between the three groups. Reading later the solution on the Riddler, I saw that there was an exact solution for 4 draws when

p=\frac{3-sqrt{3(4\sqrt{9}-6}}{6}

Augmenting the precision of my solver (by multiplying all terms by 100), I indeed found a difference of

> solver((3-sqrt(3*(4*sqrt(6)-9)))/6,ba=1e5)[1]
[1] 8.940697e-08

which means an error of 9 x 100⁻⁴ x 10⁻⁸, ie roughly 10⁻¹⁵.

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)