Reference Chart for Precision of Wilson Binomial Proportion Confidence Interval

October 16, 2015
By

(This article was first published on BioStatMatt » R, and kindly contributed to R-bloggers)

WilsonScoreChart

I am often asked about the number of subjects needed to study a binary outcome, which usually leads to a discussion of confidence intervals for binary proportions, and the associated precision. Sometimes the precision is quantified as the width or half-width of a 95% confidence interval. For proportions, I like the Wilson score interval because it’s simple to calculate and does not violate the constraints of probability estimates (i.e., estimates must be between 0 and 1). Below is a function that computes the Wilson interval, given the number of trials (n) and the fraction of events (p).


## Level (1-a) Wilson confidence interval for proportion
## WILSON, E. B. 1927. Probable inference, the law of succession,
## and statistical inference. Journal of the American Statistical
## Association 22: 209-212.
WilsonBinCI <-  function(n, p, a=0.05) {
  z <- qnorm(1-a/2,lower.tail=FALSE)
  l <- 1/(1+1/n*z^2)*(p + 1/2/n*z^2 + 
       z*sqrt(1/n*p*(1-p) + 1/4/n^2*z^2))
  u <- 1/(1+1/n*z^2)*(p + 1/2/n*z^2 -
       z*sqrt(1/n*p*(1-p) + 1/4/n^2*z^2))
  list(lower=l, upper=u)
}

The code below generates a figure that illustrates the 95% confidence bounds as a function of the probability estimate, and for a sequence of trial sizes. I’m posting this here for my future easy access, but I hope some readers will find it useful as well, or might suggest improvements.


pseq <- seq(0, 1, length.out=200)
nseq <- c(10,20,50,200,1000)
gcol <- gray.colors(length(nseq), start = 0.3, end = 0.7)
par(mar=c(5,5,4,2)+0.1)
plot(pseq, pseq, type="n",
     ylim=c(-0.3,0.3),
     main="Wilson Binomial 95% CI",
     xlab="Probability Estimate (P)",
     ylab="", 
     yaxt="n")
pbnd <- -3:3/10
axis(2, at=pbnd, labels=
       ifelse(pbnd<0, paste0("P",pbnd),
              ifelse(pbnd==0, rep("P",length(pbnd)),
                     paste0("P+",pbnd))),las=2)
mtext("95% CI", 2, line = 4)
legend("topright", paste("N =", nseq),
       fill=gcol, border=NA, bty="n", cex=0.8)

for(i in 1:length(nseq)) {
  bnds <- t(sapply(pseq, function(p)
    unlist(WilsonBinCI(nseq[i], p))))
  bnds <- bnds - pseq
  polygon(x=c(pseq,rev(pseq)),
          y=c(bnds[,2],rev(bnds[,1])),
          border=NA, col=gcol[i])
  pmin <- pseq[which.min(bnds[,1])]
  bmin <- min(bnds[,1])
  lines(x=c(-1,rep(pmin,2)),
        y=c(rep(bmin,2),-1), lty=3)
}
abline(h=0, lty=3)

WilsonScoreChart

To leave a comment for the author, please follow the link and comment on their blog: BioStatMatt » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)