Real-Time Predictive Analytics with Big Data, and R

November 30, 2012

(This article was first published on Revolutions, and kindly contributed to R-bloggers)

Can R be used for real-time applications? Absolutely! The key is in setting up an technology stack that can support real-time interactions with models developed in R … and a clear understanding of what "real-time" really means, and its implications in the context of Big Data.

Revolution Analytics Big Data Analytics Architecture

I explained how this works in yesterday's webinar, Real-Time Predictive Analytics with Big Data, From Deployment to Production. I described the four layers of the analytics stack above, and outlined a process for deploying real-time predictive analytics applications based on R:

  1. Data Distillation
  2. Model development
  3. Model validation and deployment
  4. Real-time model scoring
  5. Model refresh

At the end of the presentation I also included what I hope are more useful definitions of "real time" and "big data" than the buzz-words alone. I've embedded the video replay; you can also download it and the slides from the Revolution Analytics webinar page linked below.


Revolution Analytics Webinars:  Real-Time Predictive Analytics with Big Data, From Deployment to Production

To leave a comment for the author, please follow the link and comment on their blog: Revolutions. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)