Propagation of error

November 11, 2011

(This article was first published on me nugget, and kindly contributed to R-bloggers)

     At the onset, this was strictly an excercise of my own curiosity and I didn't imagine writing this down in any form at all. As someone who has done some modelling work in the past, I'm embarrassed to say that I had never fully grasped how one can gauge the error of a model output without having to do some sort of Monte Carlo simulation whereby the model parameters are repeatedly randomized within a given confidence interval. Its relatively easy to imagine that a model containing many parameters, each with an associated error, will tend to propagate these errors throughout. Without getting to far over my head here, I will just say that there are defined methods for calculating the error of a variable if one knows the underlying error of the functions that define them (and I have tried out only a very simple one here!).
     In the example below, I have three main variables (x, y, and z) and two functions that define the relationships y~x and z~y. The question is, given these functions, what would be the error of a predicted z value given an initial x value? The most general rule seems to be:
     error(z~x)^2 = error(y~x)^2 + error(z~y)^2
However, correlated errors require additional terms (see Wikipedia: Propagation of uncertainty). The following example does just that by simulating correlated error terms using the MASS package's function mvrnorm().

Read more »

To leave a comment for the author, please follow the link and comment on their blog: me nugget. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)