Project Euler — problem 6

June 2, 2012
By

(This article was first published on Tony's bubble universe » R, and kindly contributed to R-bloggers)

It’s midnight officially. Let me solve the sixth problem before bed. This is a quick one.

The sum of the squares of the first ten natural numbers is, 12 + 22 + … + 102 = 385. The square of the sum of the first ten natural numbers is, (1 + 2 + … + 10)2 = 552 = 3025. Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

Well, this one is very simple. The problem is the solution itself, literally. The code is very straightforward: calculate the sum first, then one minus the other.

?View Code RSPLUS
1
2
3
4
sum1 <- sum((1:100) ^ 2)
sum2 <- (sum(1:100)) ^ 2
result <- sum2 - sum1
cat("The result is:", result, "\n")

Although the code above is straightforward, there is a simpler solution. We know that (1 + 2 + 3 + … + n) = (n)*(n+1)/2, so the square of the sum is easy to get. For the sum of the squares, you can solve a function f(n) = a*n3 + b*n2 + c*n + d, with f(0) = 0, f(1) = 1, f(2) = 5 and f(3) = 16. And the function is easily proven. As long as you get the values of a, b, c and d(btw, d = 0), you can use it to get the results very quickly. Here, the quick function is f(n) = 1/3*n3 + 1/2*n2 + 1/6*n.
PS: I think for any given power m, to calculate 1m + 2m + 3m + … + nm, there is always a quick function as f(n) = a1*nm+1 + a2*nm + a3*nm-1 + … + am+1*n. I already found f(n) = sum((1:n) ^ 3) = (n ^ 2) * (n + 1) ^ 2 / 4 and f(n) = sum((1:n) ^ 4) = n * (n + 1) * (2 * n + 1) * (3 * n ^ 2 + 3 * n - 1) / 30. Although it’s still a guess now, I think it’s very likely to be true. I just need a provement.

To leave a comment for the author, please follow the link and comment on their blog: Tony's bubble universe » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , ,

Comments are closed.

Sponsors

Mango solutions



plotly webpage

dominolab webpage



Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training

datasociety

http://www.eoda.de





ODSC

ODSC

CRC R books series





Six Sigma Online Training









Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)