precision in MCMC

January 13, 2016

(This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers)

presisio21 presisio22

While browsing Images des Mathématiques, I came across this article [in French] that studies the impact of round-off errors on number representations in a dynamical system and checked how much this was the case for MCMC algorithms like the slice sampler (recycling some R code from Monte Carlo Statistical Methods). By simply adding a few signif(…,dig=n) in the original R code. And letting the precision n vary.

presisio31 presisio32

“…si on simule des trajectoires pendant des intervalles de temps très longs, trop longs par rapport à la précision numérique choisie, alors bien souvent, les résultats des simulations seront complètement différents de ce qui se passe en réalité…” Pierre-Antoine Guihéneuf

Rather unsurprisingly (!), using a small enough precision (like two digits on the first row) has a visible impact on the simulation of a truncated normal. Moving to three digits seems to be sufficient in this example… One thing this tiny experiment reminds me of is the lumpability property of Kemeny and Snell.  A restriction on Markov chains for aggregated (or discretised) versions to be ergodic or even Markov. Also, in 2000, Laird Breyer, Gareth Roberts and Jeff Rosenthal wrote a Statistics and Probability Letters paper on the impact of round-off errors on geometric ergodicity. However, I presume [maybe foolishly!] that the result stated in the original paper, namely that there exists an infinite number of precision digits for which the dynamical system degenerates into a small region of the space does not hold for MCMC. Maybe foolishly so because the above statement means that running a dynamical system for “too” long given the chosen precision kills the intended stationary properties of the system. Which I interpret as getting non-ergodic behaviour when exceeding the period of the uniform generator. More or less.

presisio91 presisio92

Filed under: Books, R, Statistics, University life Tagged: aperiodicity, CNRS, dynamical systems, Images des Mathématiques, MCMC algorithms, Metropolis-Hastings algorithm, Monte Carlo Statistical Methods, pseudo-random generator, round-off error, slice sampler

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)