Neural Networks: How they work, and how to train them in R

March 15, 2017

(This article was first published on Revolutions, and kindly contributed to R-bloggers)

With the current focus on deep learning, neural networks are all the rage again. (Neural networks have been described for more than 60 years, but it wasn't until the the power of modern computing systems became available that they have been successfully applied to tasks like image recognition.) Neural networks are the fundamental predictive engine in deep learning systems, but it can be difficult to understand exactly what they do. To help with that, Brandon Rohrer has created this from-the-basics guide to how neural networks work:

In R, you can train a simple neural network with just a single hidden layer with the nnet package, which comes pre-installed with every R distribution. It's a great place to start if you're new to neural networks, but the deep learning applications call for more complex neural networks. R has several packages to check out here, including MXNetdarchdeepnet, and h2o: see this post for a comparison. The tensorflow package can also be used to implement various kinds of neural networks. 

Data Science and Robots Blog: How neural networks work

To leave a comment for the author, please follow the link and comment on their blog: Revolutions. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)