Mimicking SQLDF with MonetDBLite

May 9, 2018
By

(This article was first published on S+/R – Yet Another Blog in Statistical Computing, and kindly contributed to R-bloggers)

Like many useRs, I am also a big fan of the sqldf package developed by Grothendieck, which uses SQL statement for data frame manipulations with SQLite embedded database as the default back-end.

In examples below, I drafted a couple R utility functions with the MonetDBLite back-end by mimicking the sqldf function. There are several interesting observations shown in the benchmark comparison.
– The data import for csv data files is more efficient with MonetDBLite than with the generic read.csv function or read.csv.sql function in the sqldf package.
– The data manipulation for a single data frame, such as selection, aggregation, and subquery, is also significantly faster with MonetDBLite than with the sqldf function.
– However, the sqldf function is extremely efficient in joining 2 data frames, e.g. inner join in the example.

# IMPORT
monet.read.csv <- function(file) {
  monet.con <- DBI::dbConnect(MonetDBLite::MonetDBLite(), ":memory:")
  suppressMessages(MonetDBLite::monetdb.read.csv(monet.con, file, "file", sep = ","))
  result <- DBI::dbReadTable(monet.con, "file")
  DBI::dbDisconnect(monet.con, shutdown = T)
  return(result)  
}

microbenchmark::microbenchmark(monet = {df <- monet.read.csv("Downloads/nycflights.csv")}, times = 10)
#Unit: milliseconds
#  expr      min       lq     mean   median       uq      max neval
# monet 528.5378 532.5463 539.2877 539.0902 542.4301 559.1191    10

microbenchmark::microbenchmark(read.csv = {df <- read.csv("Downloads/nycflights.csv")}, times = 10)
#Unit: seconds
#     expr      min       lq     mean   median       uq      max neval
# read.csv 2.310238 2.338134 2.360688 2.343313 2.373913 2.444814    10

# SELECTION AND AGGREGATION
monet.sql <- function(df, sql) {
  df_str <- deparse(substitute(df))
  monet.con <- DBI::dbConnect(MonetDBLite::MonetDBLite(), ":memory:")  
  suppressMessages(DBI::dbWriteTable(monet.con, df_str, df, overwrite = T))
  result <- DBI::dbGetQuery(monet.con, sql)
  DBI::dbDisconnect(monet.con, shutdown = T)
  return(result)
}

microbenchmark::microbenchmark(monet = {monet.sql(df, "select * from df sample 3")}, times = 10)
#Unit: milliseconds
#  expr     min      lq     mean   median       uq     max neval
# monet 422.761 429.428 439.0438 438.3503 447.3286 453.104    10

microbenchmark::microbenchmark(sqldf = {sqldf::sqldf("select * from df order by RANDOM() limit 3")}, times = 10)
#Unit: milliseconds
#  expr      min      lq     mean   median       uq      max neval
# sqldf 903.9982 908.256 925.4255 920.2692 930.0934 963.6983    10

microbenchmark::microbenchmark(monet = {monet.sql(df, "select origin, median(distance) as med_dist from df group by origin")}, times = 10)
#Unit: milliseconds
#  expr      min       lq     mean   median       uq      max neval
# monet 450.7862 456.9589 458.6389 458.9634 460.4402 465.2253    10

microbenchmark::microbenchmark(sqldf = {sqldf::sqldf("select origin, median(distance) as med_dist from df group by origin")}, times = 10)
#Unit: milliseconds
#  expr      min       lq    mean   median       uq      max neval
# sqldf 833.1494 836.6816 841.952 843.5569 846.8117 851.0771    10

microbenchmark::microbenchmark(monet = {monet.sql(df, "with df1 as (select dest, avg(distance) as dist from df group by dest), df2 as (select dest, count(*) as cnts from df group by dest) select * from df1 inner join df2 on (df1.dest = df2.dest)")}, times = 10)
#Unit: milliseconds
#  expr      min       lq    mean   median       uq     max neval
# monet 426.0248 431.2086 437.634 438.4718 442.8799 451.275    10

microbenchmark::microbenchmark(sqldf = {sqldf::sqldf("select * from (select dest, avg(distance) as dist from df group by dest) df1 inner join (select dest, count(*) as cnts from df group by dest) df2 on (df1.dest = df2.dest)")}, times = 10)
#Unit: seconds
#  expr      min       lq     mean   median       uq      max neval
# sqldf 1.013116 1.017248 1.024117 1.021555 1.025668 1.048133    10

# MERGE 
monet.sql2 <- function(df1, df2, sql) {
  df1_str <- deparse(substitute(df1))
  df2_str <- deparse(substitute(df2))
  monet.con <- DBI::dbConnect(MonetDBLite::MonetDBLite(), ":memory:")  
  suppressMessages(DBI::dbWriteTable(monet.con, df1_str, df1, overwrite = T))
  suppressMessages(DBI::dbWriteTable(monet.con, df2_str, df2, overwrite = T))
  result <- DBI::dbGetQuery(monet.con, sql)
  DBI::dbDisconnect(monet.con, shutdown = T)
  return(result)
}

tbl1 <- monet.sql(df, "select dest, avg(distance) as dist from df group by dest")
tbl2 <- monet.sql(df, "select dest, count(*) as cnts from df group by dest")

microbenchmark::microbenchmark(monet = {monet.sql2(tbl1, tbl2, "select * from tbl1 inner join tbl2 on (tbl1.dest = tbl2.dest)")}, times = 10)
#Unit: milliseconds
#  expr      min       lq     mean  median       uq      max neval
# monet 93.94973 174.2211 170.7771 178.487 182.4724 187.3155    10

microbenchmark::microbenchmark(sqldf = {sqldf::sqldf("select * from tbl1 inner join tbl2 on (tbl1.dest = tbl2.dest)")}, times = 10)
#Unit: milliseconds
#  expr      min       lq     mean median       uq      max neval
# sqldf 19.49334 19.60981 20.29535 20.001 20.93383 21.51837    10

To leave a comment for the author, please follow the link and comment on their blog: S+/R – Yet Another Blog in Statistical Computing.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)