Maximum Covariance Analysis (MCA)

December 13, 2011
By

(This article was first published on me nugget, and kindly contributed to R-bloggers)

Maximum Covariance Analysis (MCA) (Mode 1; scaled) of Sea Level Pressure (SLP) and Sea Surface Temperature (SST) monthly anomalies for the region between -180 °W to -70 °W and +30 °N to -30 °S.  MCA coefficients (scaled) are below. The mode represents 94% of the squared covariance fraction (SCF).
Maximum Correlation Analysis (MCA) is similar to Empirical Orthogonal Function Analysis (EOF) in that they both deal with the decomposition of a covariance matrix. In EOF, this is a covariance matrix based on a single spatio-temporal field, while MCA is based on the decomposition of a "cross-covariance" matrix derived from two fields.

Read more »

To leave a comment for the author, please follow the link and comment on their blog: me nugget.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Sponsors

Mango solutions



RStudio homepage



Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training

datasociety

http://www.eoda.de





ODSC

ODSC

CRC R books series





Six Sigma Online Training









Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)