Make it explainable!

May 12, 2019
By

[This article was first published on English – SmarterPoland.pl, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Most people make the mistake of thinking design is what it looks like… People think it’s this veneer — that the designers are handed this box and told, ‚Make it look good!’ That’s not what we think design is. It’s not just what it looks like and feels like. Design is how it works.

Steve Jobs, The New York Times, 2003.

Same goes with interpretable machine learning.
Recently, I am talking a lot about interpretations and explainability. And sometimes I got impression that techniques like SHAP, Break Down, LIME, SAFE are treated like magical incantations that converts complex predictive models into ,,something interpretable’’.

But interpretability/explainability is not a binary feature that you have it or not. It’s a process. The goal is to increase our understanding of the model behavior. Try different techniques to broaden the knowledge about the model or about model predictions.
Maybe you will never explain 100%, but you will understand more.

XAI/IML (eXplainable Artificial Intelligence/Interpretable Machine Learning) techniques can be used not only for post-hoc explainability, but also for model maintenance, debugging or in early phases of crisp modeling. Visual tools like PDP/ALE/CeterisParibus will change the way how we approach modeling and how we interact with models. We as model developers, model auditors or users.

Together with Tomasz Burzykowski from UHasselt we work on a book about the methodology for visual exploration, explanation and debugging predictive models.

Find the early version here https://pbiecek.github.io/PM_VEE/.

There is a lot of R snippets that shows how to use DALEX (and sometimes other packages like shapper, ingredients, iml, iBreakDown, condvis, localModel, pdp) to better understand some aspects of your predictive model.

It’s a work in process and even in an early dirty phase (despite the fact that we have started a year ago).
Feel free to comment it, or suggest improvements. Easiest way to do this is to add a new issue.

Code snippets are fully thanks to archivist hooks. I think that it’s a first book that uses archivist hooks for blended experience. You can read about a model online and in just one line of code you can download an object to your R console.

First chapters show how to use Ceteris Paribus Profiles / Individual Conditional Expectations to perform what-if/sensitivity analysis of a model.

To leave a comment for the author, please follow the link and comment on their blog: English – SmarterPoland.pl.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)