Gone Guerrill_ R on Our Data

August 16, 2010

[This article was first published on The Pith of Performance, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Here’s a summary of some things we learnt about applying R to computer performance and capacity planning data in the GDAT Class last week.

  • Neural nets pkg nnet applied to CPU performance data in the Ripley and Venables book (see Section 8.10).
  • How to do stacked plots that Jim calls “spark plots.”
  • Jim told us that ggplot has a nice GUI but considerably slower than using the base plot routines.
  • Use of POSIXct to convert timestamps.
  • Handling multi-line headers.
  • Handling multi-word fields in headers.
  • To make getwd() like the UNIX shell command: pwd<-function(){cat(getwd())}.
  • Think of lapply as a vectorized for-loop.
  • Calculating confidence intervals, which David explained earlier in the week, is available as the CI function in gmodels pkg on CRAN.
  • Fourier Transform Your Data. This was done using Mathematica but the same thing can be accomplished with the fftw pkg on CRAN.
  • VAMOOS your data.

If you want to learn things like this, then consider putting this GDAT class on your calendar for next year.

To leave a comment for the author, please follow the link and comment on their blog: The Pith of Performance.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)