Explore Predictive Maintenance with flexdashboard

November 1, 2017

(This article was first published on Shirin's playgRound, and kindly contributed to R-bloggers)

I have written the following post about Predictive Maintenance and flexdashboard at my company codecentric’s blog:

Predictive Maintenance is an increasingly popular strategy associated with Industry 4.0; it uses advanced analytics and machine learning to optimize machine costs and output (see Google Trends plot below).
A common use-case for Predictive Maintenance is to proactively monitor machines, so as to predict when a check-up is needed to reduce failure and maximize performance. In contrast to traditional maintenance, where each machine has to undergo regular routine check-ups, Predictive Maintenance can save costs and reduce downtime. A machine learning approach to such a problem would be to analyze machine failure over time to train a supervised classification model that predicts failure. Data from sensors and weather information is often used as features in modeling.

With flexdashboard RStudio provides a great way to create interactive dashboards with R. It is an easy and very fast way to present analyses or create story maps. Here, I have used it to demonstrate different analysis techniques for Predictive Maintenance. It uses Shiny run-time to create interactive content.

Continue reading at https://blog.codecentric.de/en/2017/11/explore-predictive-maintenance-flexdashboard/

To leave a comment for the author, please follow the link and comment on their blog: Shirin's playgRound.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)