Here you will find daily news and tutorials about R, contributed by over 573 bloggers.
There are many ways to follow us - By e-mail:On Facebook: If you are an R blogger yourself you are invited to add your own R content feed to this site (Non-English R bloggers should add themselves- here)

(This article was first published on SAS and R, and kindly contributed to R-bloggers)

It’s useful to look at scatterplots even when the “y” variable is dichotomous. For example, this can help determine whether categorization or linear assumptions would be more plausible. However, an unmodified scatterplot is less than helpful, since all of the “y” values are either 0 or 1, and are hard to separate visually. Some jittering (section 5.2.4) is useful in that regard. In addition, it is often useful to plot a smoothed line through the data. We use the data generated in section 7.2 to demonstrate.

SAS In SAS, we add jitter, then plot the jittered values and the observed values on the same plot using the overlay option. We display the jittered values as dots and add a smoothed line through the real (not jittered) data without displaying their values using symbol statements (sections 5.2.2, 5.2.6).

data ds2; set test; yplot = ytest + uniform(0) * .2; run;

symbol1 i = sm50s v = none c = black; symbol2 i = none v = dot c = black; proc gplot data = ds2; plot (ytest yplot) * xtest / overlay; run;

And the resulting plot is:

R In R, we display a scatterplot (section 5.1.1) of the jittered values against the covariate. The jitter() function (section 5.2.4) is called within the plot() function. We then add the smoothed line, based on the real (not jittered) data using the lines() function (section 5.2.1), called with the appropriate lowess() (section 5.2.6) object as input.