Here you will find daily news and tutorials about R, contributed by over 750 bloggers.
There are many ways to follow us - By e-mail:On Facebook: If you are an R blogger yourself you are invited to add your own R content feed to this site (Non-English R bloggers should add themselves- here)

Upon being thrown a prickly binary classification problem, most data practitioners will have dug deep into their statistical tool box and pulled out the trusty logistic regression model.

Essentially, logistic regression can help us predict a binary (yes/no) response with consideration given to other, hopefully related, variables. For example, one might want to predict whether a person will experience a heart attack given their weight and age. In this case, we have reason to believe weight and age are related to the incidence of heart attacks.

So, they will have sorted their data, fired up R and typed something along the lines of:

glm(heartAttack ~ weight + age, data = heartData, family=binomial())

But what is a glm? What does family = binomial() actually mean?

It turns out the logistic regression model is a member of a broad group of models known as generalised linear models, or GLMs for short.

This series will endeavor to help demystify these highly useful models.

Stay tuned.

Related

To leave a comment for the author, please follow the link and comment on their blog: some real numbers.