Creating Annotated Data Frames from GEO with the GEOquery package

August 5, 2016

(This article was first published on Let's talk about science with R, and kindly contributed to R-bloggers)

Mining gene expression data from publicly available databases is a great way to find evidence to support you working hypothesis that gene X is relevant in condition Y. You may also want to mine publicly available data to build on an existing hypothesis or simply to find additional support for your favorite gene in a different animal model or experimental condition. In this post, we will go over how to use the GEOquery package to download a data matrix (or eset object) directly into R and append specific probe annotation information to this matrix for it to be exported as a csv file for easy manipulation in Excel or spreadsheet tools. This is especially useful for sharing data with collaborators who are not familiar with R and would rather look up there favorite genes in a spreadsheet format.

First, let’s start by opening an R session and creating a function to return the eset (ExpressionSet) object or the original list object downloaded by the getGEO() function in R.

getGEOdataObjects <- function(x, getGSEobject=FALSE){
# Make sure the GEOquery package is installed
# Use the getGEO() function to download the GEO data for the id stored in x
GSEDATA <- getGEO(x, GSEMatrix=T, AnnotGPL=FALSE)
# Inspect the object by printing a summary of the expression values for the first 2 columns
print(summary(exprs(GSEDATA[[1]])[, 1:2]))

# Get the eset object
eset <- GSEDATA[[1]]
# Save the objects generated for future use in the current working directory
save(GSEDATA, eset, file=paste(x, ".RData", sep=""))

# check whether we want to return the list object we downloaded on GEO or
# just the eset object with the getGSEobject argument
if(getGSEobject) return(GSEDATA) else return(eset)

We can test this function on a GEO dataset such as GSE73835 as follows:

# Store the dataset ids in a vector GEO_DATASETS just in case you want to loop through several GEO ids
GEO_DATASETS <- c("GSE73835")

# Use the function we created to return the eset object
eset <- getGEOdataObjects(GEO_DATASETS[1])
# Inspect the eset object to get the annotation GPL id

You will see the following output:

ExpressionSet (storageMode: lockedEnvironment)
assayData: 45281 features, 6 samples
element names: exprs
protocolData: none
sampleNames: GSM1904293 GSM1904294 … GSM1904298 (6 total)
varLabels: title geo_accession … data_row_count (35 total)
varMetadata: labelDescription
featureNames: ILMN_1212602 ILMN_1212603 … ILMN_3163582 (45281 total)
fvarLabels: ID Species … ORF (30 total)
fvarMetadata: Column Description labelDescription
experimentData: use ‘experimentData(object)’
Annotation: GPL6887

We will first need to download the annotation file for GPL6887. Then we can create a data frame with the probe annotation categories we are most interested in as follows:

# Get the annotation GPL id (see Annotation: GPL10558)
gpl <- getGEO('GPL6887', destdir=".")

# Inspect the table of the gpl annotation object

# Get the gene symbol and entrez ids to be used for annotations
Table(gpl)[1:10, c(1, 6, 9, 12)]

# Get the gene expression data for all the probes with a gene symbol
geneProbes <- which(!$Symbol))
probeids <- as.character(Table(gpl)$ID[geneProbes])

probes <- intersect(probeids, rownames(exprs(eset)))

geneMatrix <- exprs(eset)[probes, ]

inds <- which(Table(gpl)$ID %in% probes)
# Check you get the same probes

# Create the expression matrix with gene ids
geneMatTable <- cbind(geneMatrix, Table(gpl)[inds, c(1, 6, 9, 12)])

# Save a copy of the expression matrix as a csv file
write.csv(geneMatTable, paste(GEO_DATASETS[1], "_DataMatrix.csv", sep=""), row.names=T)

Let’s take a look at the first 6 lines of the data frame we just created with the head() function.

example1As you can see once we export this data frame as a csv file, it is much easier for others to open this file as a spreadsheet and get useful information such as the gene symbol or entrez id with the expression values across the samples.

Hope this helps and happy collaborations!

To leave a comment for the author, please follow the link and comment on their blog: Let's talk about science with R. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)