Converting Individual Binary vectors to a Value based on Column Names
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
When processing data downloaded from popular survey engines, it’s not uncommon for multiple choice questions to be represented as one column per possible response coded as 0/1. So, a question with just two responses might be downloaded as part of a CSV with one column for q1_1 and another for q1_2. If the responses are mutually exclusive, then (q1_1 == 0 iff q1_2 == 1) and (q1_1 == 1 iff q1_2 == 0). If the responses are part of a “choose all that apply” question, then it’s possible to have multiple 1s.
How can these individual binary indicator variables be reassembled into a single response variable?
First, let’s simulate some response data for non-mutually exclusive questions—each row represents one respondent’s choices:
df <- data.frame( q1_1 = round(runif(5), 0), q1_2 = round(runif(5), 0), q1_3 = round(runif(5), 0), q2_1 = round(runif(5), 0), q2_2 = round(runif(5), 0), q3_1 = round(runif(5), 0), q3_2 = round(runif(5), 0), q3_3 = round(runif(5), 0), q3_4 = round(runif(5), 0) ) df
q1_1 q1_2 q1_3 q2_1 q2_2 q3_1 q3_2 q3_3 q3_4 1 1 0 0 1 0 1 1 0 1 2 0 1 0 0 1 1 1 0 1 3 1 1 1 1 1 0 0 0 1 4 0 1 0 1 1 1 1 0 1 5 0 0 1 1 0 1 0 0 0
R’s dplyr package offers the coalesce function, which doesn’t suit my needs when the data contains 0s for non-selected response choices. Notice below in row 2, for example, that q1 and q2 select the first non-NA values, which is 0:
library(dplyr) df %>% mutate(q1 = coalesce(q1_1, q1_2, q1_3)) %>% mutate(q2 = coalesce(q2_1, q2_2)) %>% mutate(q3 = coalesce(q3_1, q3_2, q3_3, q3_4))
q1_1 q1_2 q1_3 q2_1 q2_2 q3_1 q3_2 q3_3 q3_4 q1 q2 q3 1 1 0 0 1 0 1 1 0 1 1 1 1 2 0 1 0 0 1 1 1 0 1 0 0 1 3 1 1 1 1 1 0 0 0 1 1 1 1 4 0 1 0 1 1 1 1 0 1 0 1 1 5 0 0 1 1 0 1 0 0 0 0 1 1
If you replace all 0s with NA, you can get closer to what you need:
df %>% mutate_all(~ifelse(. == 0, NA_real_, .)) %>% mutate(q1 = coalesce(q1_1, q1_2, q1_3)) %>% mutate(q2 = coalesce(q2_1, q2_2)) %>% mutate(q3 = coalesce(q3_1, q3_2, q3_3, q3_4))
q1_1 q1_2 q1_3 q2_1 q2_2 q3_1 q3_2 q3_3 q3_4 q1 q2 q3 1 1 NA NA 1 NA 1 1 NA 1 1 1 1 2 NA 1 NA NA 1 1 1 NA 1 1 1 1 3 1 1 1 1 1 NA NA NA 1 1 1 1 4 NA 1 NA 1 1 1 1 NA 1 1 1 1 5 NA NA 1 1 NA 1 NA NA NA 1 1 1
Unfortunately, the q1 vector here only tells us that there was some response by each respondent, not which response they gave for q1.
It would be nice to have a version of coalesce that gathered not the first non-NA value, but the column name of the first non-NA value. Here, I’ll use the structure of dplyr’s coalesce as a model:
coalesce_colname <-
function(...) {
if (missing(..1)) {
abort("At least one argument must be supplied")
}
colnames <- as.character(as.list(match.call()))[-1]
values <- list(...)
x <- values[[1]]
x[!is.na(x)] <- colnames[1]
values <- values[-1]
colnames <- colnames[-1]
for (i in seq_along(values)) {
x <- ifelse(is.na(x) & !is.na(values[[i]]), colnames[i], x)
}
x
}
With this, you have a drop-in replacement for coalesce that captures the column name:
df %>% mutate_all(~ifelse(. == 0, NA_real_, .)) %>% mutate(q1 = coalesce_colname(q1_1, q1_2, q1_3)) %>% mutate(q2 = coalesce_colname(q2_1, q2_2)) %>% mutate(q3 = coalesce_colname(q3_1, q3_2, q3_3, q3_4))
q1_1 q1_2 q1_3 q2_1 q2_2 q3_1 q3_2 q3_3 q3_4 q1 q2 q3 1 1 NA NA 1 NA 1 1 NA 1 q1_1 q2_1 q3_1 2 NA 1 NA NA 1 1 1 NA 1 q1_2 q2_2 q3_1 3 1 1 1 1 1 NA NA NA 1 q1_1 q2_1 q3_4 4 NA 1 NA 1 1 1 1 NA 1 q1_2 q2_1 q3_1 5 NA NA 1 1 NA 1 NA NA NA q1_3 q2_1 q3_1
and with a little effort, you can wrangle the column name to extract the response value:
df %>%
mutate_all(~ifelse(. == 0, NA_real_, .)) %>%
mutate(q1 = coalesce_colname(q1_1, q1_2, q1_3)) %>%
mutate(q2 = coalesce_colname(q2_1, q2_2)) %>%
mutate(q3 = coalesce_colname(q3_1, q3_2, q3_3, q3_4)) %>%
mutate_at(c("q1", "q2", "q3"), ~stringr::str_extract(., "\\d+$"))
q1_1 q1_2 q1_3 q2_1 q2_2 q3_1 q3_2 q3_3 q3_4 q1 q2 q3 1 1 NA NA 1 NA 1 1 NA 1 1 1 1 2 NA 1 NA NA 1 1 1 NA 1 2 2 1 3 1 1 1 1 1 NA NA NA 1 1 1 4 4 NA 1 NA 1 1 1 1 NA 1 2 1 1 5 NA NA 1 1 NA 1 NA NA NA 3 1 1
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.