# Bounded target support

July 4, 2011
By

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Here is an interesting question from Tomàs that echoes a lot of related emails:

I’m turning to you for advice. I’m facing problem  where parameter space is bounded, e.g. all parameters have to be positive.
If in MCMC as proposal distribution I use normal distribution, then at some iterations I get negative proposals. So my question is: should I use recalculation of acceptance probability every time I reject the proposal (something like in delayed rejection method), or I have to use another proposal (like lognormal, trancated normal, etc.)?

It is indeed a popular belief that something needs to be done to counteract restricted supports. However, there is no mathematical reason for doing so! Consider the following illustration

```target=function(x) (x>0)*(x<1)*dnorm(x,mean=4)
mcmc=rep(0.5,10^5)
for (t in 2:10^5){
prop=mcmc[t-1]+rnorm(1,.1)
if (runif(1)
and the following outcome, with a perfect fit!

Filed under: Books, R, Statistics, University life Tagged: Monte Carlo Statistical Methods

var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' };

(function(d, t) {
var s = d.createElement(t); s.type = 'text/javascript'; s.async = true;
var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r);
}(document, 'script'));

Related
ShareTweet

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or  here if you don't.