Benchmarking Revolution R Open on Linux

November 10, 2014

(This article was first published on Revolutions, and kindly contributed to R-bloggers)

We recently shared some benchmarks for Revolution R Open on the Windows platform, which showed significant improvements compared to R downloaded from CRAN. Those performance gains mainly come from multi-threading: Revolution R Open is linked to the Intel Math Kernel Library, which uses all available cores (rather than just one core) to compute matrix and vector operations in parallel.

The standard R build on Macs is already linked to a multithreaded math library, and if you build R yourself on Linux you can always link it to one. So it was interesting to see that Domino Data Labs benchmarked Revolution R Open against their stock build of R (already linked to a multithreaded library) and still found improved performance improvements: 30% faster on a single-core machine and 40% faster on a 4-core machine:


The Intel MKL is quite impressive in this regard: not only does it perform computations in parallel, but it also uses highly optimized algorithms and even optimizations at the machine-code level (pipelining operations). You can get those optimizations in Revolution R Open on all platforms, without changing a single line of R code.

Domino Data Lab blog: 40-percent faster R without any code changes

To leave a comment for the author, please follow the link and comment on their blog: Revolutions. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)