Blog Archives

Self-starting routines for nonlinear regression models

Self-starting routines for nonlinear regression models

In R, the drc package represents one of the main solutions for nonlinear regression and dose-response analyses (Ritz et al., 2015). It comes with a lot of nonlinear models, which are useful to describe several biological processes, from plant growth to bioassays, from herbicide degradation to seed germination. These models are provided with self-starting functions, which free the user...

Read more »

Some everyday data tasks: a few hints with R (revisited)

One year ago, I published a post titled ‘Some everyday data tasks: a few hints with R’. In that post, I considered four data tasks, that we all need to accomplish daily, i.e. subsetting sorting casting melting In that post, I used the methods I was more familiar with. And, as a long-time R user, I have mainly incorporated in my workflow all the...

Read more »

Nonlinear combinations of model parameters in regression

Nonlinear combinations of model parameters in regression

Nonlinear regression plays an important role in my research and teaching activities. While I often use the ‘drm()’ function in the ‘drc’ package for my research work, I tend to prefer the ‘nls()’ function for teaching purposes, mainly because, in my opinion, the transition from linear models to nonlinear models is smoother, for beginners. One problem with ‘nls()’ is...

Read more »

Fitting ‘complex’ mixed models with ‘nlme’: Example #4

Fitting ‘complex’ mixed models with ‘nlme’: Example #4

Testing for interactions in nonlinear regression Factorial experiments are very common in agriculture and they are usually laid down to test for the significance of interactions between experimental factors. For example, genotype assessments may be performed at two different nitrogen fertilisation levels (e.g. high and low) to understand whether the ranking of genotypes depends on nutrient availability. For those of you...

Read more »

Fitting ‘complex’ mixed models with ‘nlme’: Example #3

Fitting ‘complex’ mixed models with ‘nlme’: Example #3

Accounting for the experimental design in regression analyses In this post, I am not going to talk about real complex models. However, I am going to talk about models that are often overlooked by agronomists and biologists, while they may be necessary in several circumstances, especially with field experiments. The point is that field experiments are very often laid down in...

Read more »

Fitting ‘complex’ mixed models with ‘nlme’: Example #2

A repeated split-plot experiment with heteroscedastic errors Let’s imagine a field experiment, where different genotypes of khorasan wheat are to be compared under different nitrogen (N) fertilisation systems. Genotypes require bigger plots, with respect to fertilisation treatments and, therefore, the most convenient choice would be to lay-out the experiment as a split-plot, in a randomised complete block design. Genotypes would...

Read more »

Fitting ‘complex’ mixed models with ‘nlme’. Example #1

The environmental variance model Fitting mixed models has become very common in biology and recent developments involve the manipulation of the variance-covariance matrix for random effects and residuals. To the best of my knowledge, within the frame of frequentist methods, the only freeware solution in R should be based on the ‘nlme’ package, as the ‘lmer’ package does not easily...

Read more »

Germination data and time-to-event methods: comparing germination curves

Germination data and time-to-event methods: comparing germination curves

Very often, seed scientists need to compare the germination behaviour of different seed populations, e.g., different plant species, or one single plant species submitted to different temperatures, light conditions, priming treatments and so on. How should such a comparison be performed? Let’s take a practical approach and start from an appropriate example: a few years ago, some collegues studied the...

Read more »

Survival analysis and germination data: an overlooked connection

Survival analysis and germination data: an overlooked connection

The background Seed germination data describe the time until an event of interest occurs. In this sense, they are very similar to survival data, apart from the fact that we deal with a different (and less sad) event: germination instead of death. But, seed germination data are also similar to failure-time data, phenological data, time-to-remission data… the first point is:...

Read more »

Stabilising transformations: how do I present my results?

Stabilising transformations: how do I present my results?

ANOVA is routinely used in applied biology for data analyses, although, in some instances, the basic assumptions of normality and homoscedasticity of residuals do not hold. In those instances, most biologists would be inclined to adopt some sort of stabilising transformations (logarithm, square root, arcsin square root…), prior to ANOVA. Yes, there might be more advanced and elegant solutions,...

Read more »

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)