Blog Archives

Principal Component Analysis in R

January 23, 2017
By
Principal Component Analysis in R

Principal component analysis (PCA) is routinely employed on a wide range of problems. From the detection of outliers to predictive modeling, PCA has the ability of projecting the observations described by variables into few orthogonal components defined at where the data ‘stretch’ the most, rendering a simplified overview. PCA is particularly powerful in dealing with multicollinearity and variables that … Continue...

Read more »

Probability distributions in R

December 4, 2016
By
Probability distributions in R

Some of the most fundamental functions in R, in my opinion, are those that deal with probability distributions. Whenever you compute a P-value you rely on a probability distribution, and there are many types out there. In this exercise I will cover four: Bernoulli, Binomial, Poisson, and Normal distributions. Let me begin with some theory first: Bernoulli … Continue...

Read more »

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)