abcfr 0.9-3

August 26, 2015

(This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers)

garden tree, Jan. 12, 2012In conjunction with our reliable ABC model choice via random forest paper, about to be resubmitted to Bioinformatics, we have contributed an R package called abcrf that produces a most likely model and its posterior probability out of an ABC reference table. In conjunction with the realisation that we could devise an approximation to the (ABC) posterior probability using a secondary random forest. “We” meaning Jean-Michel Marin and Pierre Pudlo, as I only acted as a beta tester!

abcrfThe package abcrf consists of three functions:

  • abcrf, which constructs a random forest from a reference table and returns an object of class `abc-rf’;
  • plot.abcrf, which gives both variable importance plot of a model choice abc-rf object and the projection of the reference table on the LDA axes;
  • predict.abcrf, which predict the model for new data and evaluate the posterior probability of the MAP.

An illustration from the manual:

mc.rf <- abcrf(snp[1:1e3, 1], snp[1:1e3, -1])
predict(mc.rf, snp[1:1e3, -1], snp.obs)

Filed under: R, Statistics, University life Tagged: ABC, ABC model choice, abcrf, bioinformatics, CRAN, R, random forests, reference table, SNPs

To leave a comment for the author, please follow the link and comment on their blog: Xi'an's Og » R. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)