Linear Model with Feature Engineering: Silver Prices Surge
[This article was first published on DataGeeek, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Silver prices have reached a 14-year high amid growing expectations that the US Federal Reserve (FED) will cut interest rates this month.
According to the machine learning model, the bands are down, and the price is above the upper band, indicating anomalous price levels.

Source code:
library(tidyverse) library(tidymodels) library(tidyquant) library(timetk) library(modeltime) #Silver Futures df_silver <- tq_get("SI=F") %>% select(date, close) %>% filter(date >= last(date) - months(36)) %>% drop_na() #Splitting the data df_split <- df_silver %>% time_series_split(assess = "30 days", cumulative = TRUE) df_train <- training(df_split) df_test <- testing(df_split) # Turn the normal mean function into a rolling mean with a 5 row .period mean_roll_5 <- slidify(mean, .period = 5, .align = "right") #Preprocessing rec_spec <- recipe(close ~ ., data = df_train) %>% step_timeseries_signature(date) %>% step_mutate(slid_close = mean_roll_5(close)) %>% step_impute_bag(slid_close) %>% step_fourier(date, period = 365, K = 5) %>% step_rm(date) %>% step_dummy(all_nominal_predictors(), one_hot = TRUE) %>% step_zv(all_predictors()) %>% step_normalize(all_numeric_predictors()) #Model Specification mod_spec <- linear_reg() %>% set_engine("lm") #Training wflow_fit <- workflow() %>% add_recipe(rec_spec) %>% add_model(mod_spec) %>% fit(df_train) #Modeltime df_modeltime <- modeltime_table(wflow_fit) #Calibrate the model to the testing set calibration_tbl <- df_modeltime %>% modeltime_calibrate(new_data = df_test) #Accuracy of the finalized model calibration_tbl %>% modeltime_accuracy(metric_set = metric_set(rmse, rsq, mape)) #Prediction Intervals calibration_tbl %>% modeltime_forecast( new_data = df_test, actual_data = df_test ) %>% plot_modeltime_forecast( .interactive = FALSE, .line_size = 1.5 ) + labs(title = "Silver Futures", subtitle = "<span style = 'color:dimgrey;'>Predictive Intervals</span> of <span style = 'color:red;'>ML Model</span> Model", y = "", x = "") + scale_y_continuous(labels = scales::label_currency()) + scale_x_date(labels = scales::label_date("%b %d"), date_breaks = "4 days") + theme_minimal(base_family = "Roboto Slab", base_size = 16) + theme(plot.subtitle = ggtext::element_markdown(face = "bold"), plot.title = element_text(face = "bold"), plot.background = element_rect(fill = "azure", color = "azure"), panel.background = element_rect(fill = "snow", color = "snow"), axis.text = element_text(face = "bold"), axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1), legend.position = "none")
To leave a comment for the author, please follow the link and comment on their blog: DataGeeek.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.