Linear Model with Feature Engineering: Silver Prices Surge

[This article was first published on DataGeeek, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Silver prices have reached a 14-year high amid growing expectations that the US Federal Reserve (FED) will cut interest rates this month.

According to the machine learning model, the bands are down, and the price is above the upper band, indicating anomalous price levels.

Source code:

library(tidyverse)
library(tidymodels)
library(tidyquant)
library(timetk)
library(modeltime)

#Silver Futures
df_silver <- 
  tq_get("SI=F") %>% 
  select(date, close) %>% 
  filter(date >= last(date) - months(36)) %>% 
  drop_na()


#Splitting the data
df_split <- 
  df_silver %>% 
  time_series_split(assess = "30 days", 
                    cumulative = TRUE)

df_train <- 
  training(df_split)

df_test <- 
  testing(df_split)

# Turn the normal mean function into a rolling mean with a 5 row .period
mean_roll_5 <- slidify(mean, .period = 5, .align = "right")

#Preprocessing
rec_spec <- 
  recipe(close ~ ., data = df_train) %>% 
  step_timeseries_signature(date) %>% 
  step_mutate(slid_close = mean_roll_5(close)) %>% 
  step_impute_bag(slid_close) %>% 
  step_fourier(date, period = 365, K = 5) %>%
  step_rm(date) %>%
  step_dummy(all_nominal_predictors(), one_hot = TRUE) %>% 
  step_zv(all_predictors()) %>% 
  step_normalize(all_numeric_predictors())


#Model Specification
mod_spec <- 
  linear_reg() %>% 
  set_engine("lm")


#Training
wflow_fit <- 
  workflow() %>% 
  add_recipe(rec_spec) %>% 
  add_model(mod_spec) %>% 
  fit(df_train)

#Modeltime
df_modeltime <- 
  modeltime_table(wflow_fit)

#Calibrate the model to the testing set
calibration_tbl <- 
  df_modeltime %>%
  modeltime_calibrate(new_data = df_test)


#Accuracy of the finalized model
calibration_tbl %>%
  modeltime_accuracy(metric_set = metric_set(rmse, rsq, mape))

  
#Prediction Intervals
calibration_tbl %>%
  modeltime_forecast(
    new_data    = df_test,
    actual_data = df_test
  ) %>% 
  plot_modeltime_forecast(
    .interactive = FALSE,
    .line_size = 1.5
  )  +
  labs(title = "Silver Futures", 
       subtitle = "<span style = 'color:dimgrey;'>Predictive Intervals</span> of <span style = 'color:red;'>ML Model</span> Model", 
       y = "", x = "") + 
  scale_y_continuous(labels = scales::label_currency()) +
  scale_x_date(labels = scales::label_date("%b %d"),
               date_breaks = "4 days") +
  theme_minimal(base_family = "Roboto Slab", base_size = 16) +
  theme(plot.subtitle = ggtext::element_markdown(face = "bold"),
        plot.title = element_text(face = "bold"),
        plot.background = element_rect(fill = "azure", color = "azure"),
        panel.background = element_rect(fill = "snow", color = "snow"),
        axis.text = element_text(face = "bold"),
        axis.text.x = element_text(angle = 45, 
                                   hjust = 1, 
                                   vjust = 1),
        legend.position = "none")
To leave a comment for the author, please follow the link and comment on their blog: DataGeeek.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)