Ensemble Model for Gold Futures
[This article was first published on DataGeeek, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Goldman Sachs stated that if the FED’s reputation suffers, and investors move only a small portion of their bond holdings into gold, the price of gold could rise to nearly $5,000 an ounce.
But at least now, the ensemble model indicates that gold prices are in an overbought zone.

Source code:
library(tidymodels)
library(tidyverse)
library(modeltime)
library(modeltime.ensemble)
library(timetk)
#Gold Futures
df_gold <-
tq_get("GC=F") %>%
select(date, close) %>%
drop_na()
#Splitting
splits <-
time_series_split(df_gold,
assess = "30 days",
cumulative = TRUE)
df_train <- training(splits)
df_test <- testing(splits)
#Recipe
rec_spec <-
recipe(close ~ ., data = df_train) %>%
step_timeseries_signature(date) %>%
step_fourier(date, period = 365, K = 5) %>%
step_dummy(all_nominal_predictors(), one_hot = TRUE) %>%
step_zv(all_predictors()) %>%
step_normalize(all_numeric_predictors())
#Model 1 - Auto ARIMA
mod_spec_arima <-
arima_reg() %>%
set_engine("auto_arima")
wflw_fit_arima <-
workflow() %>%
add_model(mod_spec_arima) %>%
add_recipe(rec_spec %>% step_rm(all_predictors(), -date)) %>%
fit(df_train)
#Model 2 - Prophet
mod_spec_prophet <-
prophet_reg() %>%
set_engine("prophet")
wflw_fit_prophet <-
workflow() %>%
add_model(mod_spec_prophet) %>%
add_recipe(rec_spec) %>%
fit(df_train)
#Model 3: Boosted ARIMA
mod_arima_boosted <-
arima_boost(
min_n = 2,
learn_rate = 0.015
) %>%
set_engine(engine = "auto_arima_xgboost")
wflw_fit_arima_boost <-
workflow() %>%
add_model(mod_arima_boosted) %>%
add_recipe(rec_spec) %>%
fit(df_train)
#Modeltime Workflow for Ensemble Forecasting
df_models <-
modeltime_table(
wflw_fit_arima,
wflw_fit_prophet,
wflw_fit_arima_boost
)
#Make an Ensemble
ensemble_fit <-
df_models %>%
ensemble_average(type = "mean")
#Calibration
calibration_tbl <-
modeltime_table(
ensemble_fit
) %>%
modeltime_calibrate(df_test)
#Accuracy
calibration_tbl %>%
modeltime_accuracy() %>%
table_modeltime_accuracy(
.interactive = TRUE
)
#Predictive intervals
calibration_tbl %>%
modeltime_forecast(actual_data = df_test,
new_data = df_test) %>%
plot_modeltime_forecast(.interactive = FALSE,
.legend_show = FALSE,
.line_size = 1.5,
.color_lab = "",
.title = "Gold Futures") +
labs(subtitle = "<span style = 'color:dimgrey;'>Predictive Intervals</span> of the <span style = 'color:red;'>Ensemble Model</span>") +
scale_y_continuous(labels = scales::label_currency()) +
scale_x_date(labels = scales::label_date("%b %d"),
date_breaks = "4 days") +
theme_minimal(base_family = "Roboto Slab", base_size = 16) +
theme(plot.subtitle = ggtext::element_markdown(face = "bold"),
plot.title = element_text(face = "bold"),
plot.background = element_rect(fill = "azure", color = "azure"),
panel.background = element_rect(fill = "snow", color = "snow"),
axis.text = element_text(face = "bold"),
axis.text.x = element_text(angle = 45,
hjust = 1,
vjust = 1),
legend.position = "none")
To leave a comment for the author, please follow the link and comment on their blog: DataGeeek.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.