Hopf torus, circle by circle

[This article was first published on Saturn Elephant, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Remember my first post on the Hopf torus? I constructed it circle by circle. Below are some animations of this construction. I save the image each time a circle is added. The rgl package automatically centers the plot, and this gives a nice effect.

First animation, three lobes, using a modified stereographic projection:

Here is the code producing this animation:

# Hopf fiber
HopfFiber <- function(q, t){ 
  1/sqrt(2*(1+q[1L])) * c(q[3L]*cos(t) + q[2L]*sin(t),
                          q[2L]*cos(t) - q[3L]*sin(t),
# Modified stereographic projection
mstereog <- function(x){
  acos(x[4L])/sqrt(1-x[4L]^2) * x[1L:3L]

# plot
open3d(windowRect = c(50, 50, 562, 562))
view3d(0, 0, zoom = 0.9)
t_ <- seq(0, 2*pi, len = 200L) # 200 subdivisions per circle
u_ <- seq(0, 2*pi, len = 300L) # 300 circles
nlobes <- 3L # number of lobes of the Hopf torus
colors <- colorRampPalette( # colors
  head(trekcolors::trek_pal("klingon"), -2L),
  interpolate = "spline", bias = 0.15
colors <- c(colors, rev(colors))
for(i in 1:length(u_)){
  u <- u_[i]
  x <-  cos(pi/2 - (pi/2-0.44)*cos(nlobes*u))
  z <-  sin(pi/2 - (pi/2-0.44)*cos(nlobes*u)) * cos(u+0.44*sin(2*nlobes))
  y <- -sin(pi/2 - (pi/2-0.44)*cos(nlobes*u)) * sin(u+0.44*sin(2*nlobes))
  circle4d <- vapply(t_, function(t){
    HopfFiber(c(x, y, z), t)  
  }, numeric(4L))
  circle3d <- t(apply(circle4d, 2L, mstereog))
    cylinder3d(circle3d, radius = 0.1, sides = 15), 
    color = colors[i]
  rgl.snapshot(sprintf("pic%03d.png", i)) # save

# duplicate last pic to make a pause at the end of the animation
for(i in 301L:350L){
  file.copy("pic300.png", sprintf("pic%03d.png", i))
# make animation
pngFiles <- list.files(pattern = "^pic?.*png$")
  gif_file = "HopfTorusCircleByCircle_3lobes.gif",
  width    = 512, height   = 512,
  delay    = 1/9 # 9 pics per second
# delete png files

Four lobes, modified stereographic projection, with the ‘rocket’ color palette (in grDevices package):

Two lobes, classical stereographic projection:

To leave a comment for the author, please follow the link and comment on their blog: Saturn Elephant.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)