Fit and predict with tidymodels for #TidyTuesday bird baths in Australia

# Libraries if(!require("pacman")) { install.packages("pacman") } pacman::p_load( data.table, re2, scales, ggplot2, plotly, DT, patchwork, survival, ggfortify, scales) # Set knitr params knitr::opts_chunk$set( comment = NA, fig.width = 12, fig.height = 8, out.width = '100%' )NOTE: The read time for this post is overstated because of the formatting of the Plotly code. There are ~2,500 words, so read time should be ~10 minutes. Click to see R code generating plot
# Load function to plot dual y-axis plot source("train_sec.R") # Get data series from FRED symbols <- c("CP", "GDP", "WASCUR") start_date <- '1947-01-01' end_date <- '2021-07-30' quantmod::getSymbols( Symbols = symbols, src = "FRED", start_date = start_date, end_date = end_date )
[1] "CP" "GDP" "WASCUR"
# Merge series and convert to dt d <- as.data.table(merge(WASCUR/GDP, CP/GDP, join = "inner")) # Build superimposed dual y-axis line plot sec <- with(d, train_sec(CP, WASCUR)) p <- ggplot(d, aes(index)) + geom_line(aes(y = CP), colour = "blue", size = 1) + geom_line(aes(y = sec$fwd(WASCUR)), colour = "red", size = 1) + scale_y_continuous( "Corporate Profits to GDP", labels = scales::percent, sec.axis = sec_axis( ~ sec$rev(.), name = "Compensation of Employees to GDP", labels = scales::percent) ) + scale_x_date(date_breaks = "10 years", date_labels = "%Y") + labs(title = "Labor vs Capital", x = "Year", caption = "Source: Lots of places") + theme_bw(base_size = 22)Introduction The rise in monopoly power particularly ...
Copyright © 2022 | MH Corporate basic by MH Themes