# Batch Deployment of WoE Transformations

**S+/R – Yet Another Blog in Statistical Computing**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

After wrapping up the function **batch_woe()** today with the purpose to allow users to apply WoE transformations to many independent variables simultaneously, I have completed the development of major functions in the **MOB** package that can be usable for the model development in a production setting.

The function **batch_woe()** basically is the wrapper around **cal_woe()** and has two input parameters. The “data” parameter is the data frame that we would deploy binning outcomes and the “slst” parameter is the list of multiple binning specification tables that is either the direct output from the function batch_bin or created manually by combining outputs from multiple binning functions.

There are also two components in the output of batch_woe(), a list of PSI tables for transformed variables and a data frame with a row index and all transformed variables. The default printout is a PSI summation of all input variables to be transformed. As shown below, all PSI values are below 0.1 and therefore none is concerning.

binout <- batch_bin(df, 1) woeout <- batch_woe(df[sample(seq(nrow(df)), 2000, replace = T), ], binout$BinLst) woeout # tot_derog tot_tr age_oldest_tr tot_open_tr tot_rev_tr tot_rev_debt ... # psi 0.0027 0.0044 0.0144 0.0011 3e-04 0.0013 ... str(woeout, max.level = 1) # List of 2 # $ psi:List of 11 # $ df :'data.frame': 2000 obs. of 12 variables: # - attr(*, "class")= chr "psiSummary" head(woeout$df, 1) # idx_ woe.tot_derog woe.tot_tr woe.age_oldest_tr woe.tot_open_tr woe.tot_rev_tr ... # 1 -0.3811 -0.0215 -0.5356 -0.0722 -0.1012 ...

All source codes of the **MOB** package are available on https://github.com/statcompute/MonotonicBinning and free (as free beer) to download and distribute.

**leave a comment**for the author, please follow the link and comment on their blog:

**S+/R – Yet Another Blog in Statistical Computing**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.