# Efficient MCMC with Caching

[This article was first published on

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

**R – Stable Markets**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

This post is part of a running series on Bayesian MCMC tutorials. For updates, follow @StableMarkets. Metropolis Review Metropolis-Hastings is an MCMC algorithm for drawing samples from a distribution known up to a constant of proportionality, $latex p(\theta | y) \propto p(y|\theta)p(\theta)$. Very briefly, the algorithm works by starting with some initial draw $latex \theta^{(0)}$ then running … Continue reading Efficient MCMC with Caching

To

**leave a comment**for the author, please follow the link and comment on their blog:**R – Stable Markets**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.