Tidyverse and data.table, sitting side by side… and then base R walks in
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Of course, I’m paraphrasing Dirk’s fifteenth post in the rarely rational R rambling series: #15: Tidyverse and data.table, sitting side by side … (Part 1). I very much liked it, because, although I’m a happy tidyverse user, I’m always trying not to be tied into that verse too much by replicating certain tasks with other tools (and languages) as an exercise. In this article, I’m going to repeat Dirk’s exercise in base R.
First of all, I would like to clean up the tidyverse version a little, because the original was distributed in chunks and was a little bit too verbose. We can also avoid using lubridate
, because readr
already parses the end_date
column as a date (and that’s why it is significantly slower, among other reasons). This is how I would do it:
## Getting the polls library(tidyverse) library(zoo) polls_2016 <- read_tsv(url("http://elections.huffingtonpost.com/pollster/api/v2/questions/16-US-Pres-GE%20TrumpvClinton/poll-responses-clean.tsv")) ## Wrangling the polls polls_2016 <- polls_2016 %>% filter(sample_subpopulation %in% c("Adults","Likely Voters","Registered Voters")) %>% right_join(data.frame(end_date = seq.Date(min(.$end_date), max(.$end_date), by="days")), by="end_date") ## Average the polls rolling_average <- polls_2016 %>% group_by(end_date) %>% summarise(Clinton = mean(Clinton), Trump = mean(Trump)) %>% mutate(Clinton.Margin = Clinton-Trump, Clinton.Avg = rollapply(Clinton.Margin,width=14, FUN=function(x){mean(x, na.rm=TRUE)}, by=1, partial=TRUE, fill=NA, align="right")) ggplot(rolling_average) + geom_line(aes(x=end_date, y=Clinton.Avg), col="blue") + geom_point(aes(x=end_date, y=Clinton.Margin))
which, by the way, has exactly the very same number of lines of code than the data.table
version:
## Getting the polls library(data.table) library(zoo) library(ggplot2) pollsDT <- fread("http://elections.huffingtonpost.com/pollster/api/v2/questions/16-US-Pres-GE%20TrumpvClinton/poll-responses-clean.tsv") ## Wrangling the polls pollsDT <- pollsDT[sample_subpopulation %in% c("Adults","Likely Voters","Registered Voters"), ] pollsDT[, end_date := as.IDate(end_date)] pollsDT <- pollsDT[ data.table(end_date = seq(min(pollsDT[,end_date]), max(pollsDT[,end_date]), by="days")), on="end_date"] ## Average the polls pollsDT <- pollsDT[, .(Clinton=mean(Clinton), Trump=mean(Trump)), by=end_date] pollsDT[, Clinton.Margin := Clinton-Trump] pollsDT[, Clinton.Avg := rollapply(Clinton.Margin, width=14, FUN=function(x){mean(x, na.rm=TRUE)}, by=1, partial=TRUE, fill=NA, align="right")] ggplot(pollsDT) + geom_line(aes(x=end_date, y=Clinton.Avg), col="blue") + geom_point(aes(x=end_date, y=Clinton.Margin))
Let’s translate this into base R. It is easier to start from the data.table
version, mainly because filtering and assigning have a similar look and feel. Unsurprisingly, we have base::merge
for the merge operation and stats::aggregate
for the aggregation phase. base::as.Date
works just fine for these dates and utils::read.csv
has the only drawback that you have to specify the separator. Without further ado, this is my version in base R:
## Getting the polls library(zoo) pollsB <- read.csv(url("http://elections.huffingtonpost.com/pollster/api/v2/questions/16-US-Pres-GE%20TrumpvClinton/poll-responses-clean.tsv"), sep="\t") ## Wrangling the polls pollsB <- pollsB[pollsB$sample_subpopulation %in% c("Adults","Likely Voters","Registered Voters"), ] pollsB$end_date <- base::as.Date(pollsB$end_date) endDate <- data.frame(end_date = seq.Date(min(pollsB$end_date), max(pollsB$end_date), by="days")) pollsB <- merge(pollsB, endDate, by="end_date", all=TRUE) ## Average the polls pollsB <- aggregate(cbind(Clinton, Trump) ~ end_date, data=pollsB, mean, na.action=na.pass) pollsB$Clinton.Margin <- pollsB$Clinton - pollsB$Trump pollsB$Clinton.Avg <- rollapply(pollsB$Clinton.Margin, width=14, FUN=function(x){mean(x, na.rm=TRUE)}, by=1, partial=TRUE, fill=NA, align="right") plot(pollsB$end_date, pollsB$Clinton.Margin, pch=16) lines(pollsB$end_date, pollsB$Clinton.Avg, col="blue", lwd=2)
which is the shortest one! Finally, let’s repeat the benchmark too:
library(microbenchmark) url <- "http://elections.huffingtonpost.com/pollster/api/v2/questions/16-US-Pres-GE%20TrumpvClinton/poll-responses-clean.tsv" file <- "/tmp/poll-responses-clean.tsv" download.file(url, destfile=file, quiet=TRUE) res <- microbenchmark(tidy=suppressMessages(readr::read_tsv(file)), dt=data.table::fread(file, showProgress=FALSE), base=read.csv(file, sep="\t")) res ## Unit: milliseconds ## expr min lq mean median uq max neval ## tidy 13.877036 15.127885 18.549393 15.861311 17.813541 202.389391 100 ## dt 4.084022 4.505943 5.152799 4.845193 5.652579 7.736563 100 ## base 29.029366 30.437742 32.518009 31.449916 33.600937 45.104599 100
Base R is clearly the slowest option for the reading phase. Or, one might say, both readr
and data.table
have done a great job in improving things! Let’s take a look at the processing part now:
tvin <- suppressMessages(readr::read_tsv(file)) dtin <- data.table::fread(file, showProgress=FALSE) bsin <- read.csv(file, sep="\t") library(tidyverse) library(data.table) library(zoo) transformTV <- function(polls_2016) { polls_2016 <- polls_2016 %>% filter(sample_subpopulation %in% c("Adults","Likely Voters","Registered Voters")) %>% right_join(data.frame(end_date = seq.Date(min(.$end_date), max(.$end_date), by="days")), by="end_date") rolling_average <- polls_2016 %>% group_by(end_date) %>% summarise(Clinton = mean(Clinton), Trump = mean(Trump)) %>% mutate(Clinton.Margin = Clinton-Trump, Clinton.Avg = rollapply(Clinton.Margin,width=14, FUN=function(x){mean(x, na.rm=TRUE)}, by=1, partial=TRUE, fill=NA, align="right")) } transformDT <- function(dtin) { pollsDT <- copy(dtin) ## extra work to protect from reference semantics for benchmark pollsDT <- pollsDT[sample_subpopulation %in% c("Adults","Likely Voters","Registered Voters"), ] pollsDT[, end_date := as.IDate(end_date)] pollsDT <- pollsDT[ data.table(end_date = seq(min(pollsDT[,end_date]), max(pollsDT[,end_date]), by="days")), on="end_date"] pollsDT <- pollsDT[, .(Clinton=mean(Clinton), Trump=mean(Trump)), by=end_date] pollsDT[, Clinton.Margin := Clinton-Trump] pollsDT[, Clinton.Avg := rollapply(Clinton.Margin, width=14, FUN=function(x){mean(x, na.rm=TRUE)}, by=1, partial=TRUE, fill=NA, align="right")] } transformBS <- function(pollsB) { pollsB <- pollsB[pollsB$sample_subpopulation %in% c("Adults","Likely Voters","Registered Voters"), ] pollsB$end_date <- base::as.Date(pollsB$end_date) endDate <- data.frame(end_date = seq.Date(min(pollsB$end_date), max(pollsB$end_date), by="days")) pollsB <- merge(pollsB, endDate, by="end_date", all=TRUE) pollsB <- aggregate(cbind(Clinton, Trump) ~ end_date, data=pollsB, mean, na.action=na.pass) pollsB$Clinton.Margin <- pollsB$Clinton - pollsB$Trump pollsB$Clinton.Avg <- rollapply(pollsB$Clinton.Margin, width=14, FUN=function(x){mean(x, na.rm=TRUE)}, by=1, partial=TRUE, fill=NA, align="right") } res <- microbenchmark(tidy=transformTV(tvin), dt=transformDT(dtin), base=transformBS(bsin)) res ## Unit: milliseconds ## expr min lq mean median uq max neval ## tidy 20.68435 22.58603 26.67459 24.56170 27.85844 84.55077 100 ## dt 17.25547 18.88340 21.43256 20.24450 22.26448 41.65252 100 ## base 28.39796 30.93722 34.94262 32.97987 34.98222 109.14005 100
I don’t see so much difference between the tidyverse and data.table
as Dirk showed, perhaps because I’ve simplified the script a bit, and removed some redundant parts. Again, base R is the slowest option, but don’t set it aside: it is the shortest one, and it is always there, out of the box!
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.