# My book ‘Practical Machine Learning with R and Python’ on Amazon

[This article was first published on

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

My book ‘Practical Machine Learning with R and Python – Machine Learning in stereo’ is now available in both paperback ($9.99) and kindle ($6.97/Rs449) versions. In this book I implement some of the most common, but important Machine Learning algorithms in R and equivalent Python code. This is almost like listening to parallel channels of music in stereo!
1. Practical machine with R and Python – Machine Learning in Stereo (Paperback)
2. Practical machine with R and Python – Machine Learning in Stereo (Kindle)
This book is ideal both for beginners and the experts in R and/or Python. Those starting their journey into datascience and ML will find the first 3 chapters useful, as they touch upon the most important programming constructs in R and Python and also deal with equivalent statements in R and Python. Those who are expert in either of the languages, R or Python, will find the equivalent code ideal for brushing up on the other language. And finally,those who are proficient in both languages, can use the R and Python implementations to internalize the ML algorithms better.
Here is a look at the topics covered
**R – Giga thoughts …**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

**Table of Contents**Essential R …………………………………….. 7 Essential Python for Datascience ……………….. 54 R vs Python ……………………………………. 77 Regression of a continuous variable ………………. 96 Classification and Cross Validation ……………….113 Regression techniques and regularization …………. 134 SVMs, Decision Trees and Validation curves …………175 Splines, GAMs, Random Forests and Boosting …………202 PCA, K-Means and Hierarchical Clustering …………. 234 Pick up your copy today!! Hope you have a great time learning as I did while implementing these algorithms!

To

**leave a comment**for the author, please follow the link and comment on their blog:**R – Giga thoughts …**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.