LR02: SD line, GoA, Regression
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
This posts continues the discussion of correlation started on LR01: Correlation.
We will try to answer the following questions:
Should correlation be used for any pair of data?
Does association mean causation?
What are ecological correlations?
What happens with the scatter diagram when we change the standard deviations
of x and y?
What is the SD line?
What is the Graph of averages?
What is the Regression line.
What is the Regression function?
- Acknowledgments: organization is extracted from:
- Freedman, Pisani, Purves, Statistics, 4th ed., probably
the best book on statistical thinking (it maybe has a total of 4-5 formulas). It is referred here as FPP. - A lot of what is good is due to Professor Rudy Guerra.
- Freedman, Pisani, Purves, Statistics, 4th ed., probably
What we know so far
- Correlation coefficient: measure of linear association,
or clustering about a line (which line? The 45-degree line?
The regression line? The SD line? More on this later).
[
r = \frac{\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})}
{\sqrt{\sum_{i=1}^n (x_i-\bar{x})^2}\sqrt{\sum_{i=1}^n (y_i-\bar{y})^2}}
]
- If the scatterplot of both variables is a football-shaped cloud of points,
we can summarize the relationship between both variables by:- average of x-values, SD of x-values,
- average of y-values, SD of y-values.
- the correlation coefficient r.
<span class="n">library</span><span class="p">(</span><span class="n">UsingR</span><span class="p">)</span><span class="w">
</span><span class="c1">## Pearson's data
## Father and son data
</span><span class="n">data</span><span class="p">(</span><span class="n">father.son</span><span class="p">)</span><span class="w">
</span><span class="n">x</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">father.son</span><span class="o">$</span><span class="n">fheight</span><span class="w">
</span><span class="n">y</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">father.son</span><span class="o">$</span><span class="n">sheight</span><span class="w">
</span>
<span class="c1">## Summary statistics
</span><span class="p">(</span><span class="n">meanx</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">mean</span><span class="p">(</span><span class="n">x</span><span class="p">))</span><span class="w">
</span>
## [1] 67.6871
<span class="n">sd</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="w">
</span>
## [1] 2.744868
<span class="p">(</span><span class="n">meany</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">mean</span><span class="p">(</span><span class="n">y</span><span class="p">))</span><span class="w">
</span>
## [1] 68.68407
<span class="n">sd</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="w">
</span>
## [1] 2.814702
<span class="p">(</span><span class="n">r</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">cor</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">y</span><span class="p">))</span><span class="w">
</span>
## [1] 0.5013383
Some situations where correlation should not be used
-
Correlation coefficient: useful for football-shaped scatter diagrams.
- If not, $r$ can be misleading. Examples that give $r$ almost zero
but still highly associated:- Outliers (that should be rejected only if there is good reason to do so)
- non-linearity.
- Remember: $r$ measures linear association, not association in general.
Association is not causation
- Example from FPP: “for school children, shoe size is strongly correlated with
reading skills. However, learning new words does not make the feet get bigger.
Instead, there is a third factor involved – age. As children get older, they
learn to read better and they outgrow their shoes. (According to statistical
jargon (…), age is a confounder.) In the example, the confounder was easy to
spot. Often, this is not so easy. And the arithmetic of the correlation
coefficient does not protect you against third factors.”
Ecological correlations (misleading use of correlation)
-
What are ecological correlations? Correlations done on ecological data? No. It is
one of (many?) creative uses of statistical related techniques
(another is what is called Simpson’s paradox, related to contingency tables,
and of which you can read on FPP
or https://en.wikipedia.org/wiki/Simpson%27s_paradox,
or of ecological fallacy, of which you can read on
http://www.stat.berkeley.edu/~census/ecofall.txt).Link to data:
https://rbertolusso.github.io/data/LR/eco_corre.csv
<span class="n">eco</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">read.csv</span><span class="p">(</span><span class="n">file</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"../data/LR/eco_corre.csv"</span><span class="p">,</span><span class="w"> </span><span class="n">stringsAsFactors</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">FALSE</span><span class="p">)</span><span class="w">
</span><span class="n">par</span><span class="p">(</span><span class="n">mfrow</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">1</span><span class="p">,</span><span class="m">2</span><span class="p">))</span><span class="w">
</span><span class="c1">## Left panel
</span><span class="n">r</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="nf">round</span><span class="p">(</span><span class="n">cor</span><span class="p">(</span><span class="n">eco</span><span class="o">$</span><span class="n">math</span><span class="p">,</span><span class="w"> </span><span class="n">eco</span><span class="o">$</span><span class="n">verbal</span><span class="p">),</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w">
</span><span class="n">plot</span><span class="p">(</span><span class="n">eco</span><span class="o">$</span><span class="n">math</span><span class="p">,</span><span class="w"> </span><span class="n">eco</span><span class="o">$</span><span class="n">verbal</span><span class="p">,</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">eco</span><span class="o">$</span><span class="n">group</span><span class="p">,</span><span class="w">
</span><span class="n">xlim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">400</span><span class="p">,</span><span class="w"> </span><span class="m">800</span><span class="p">),</span><span class="w"> </span><span class="n">ylim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">400</span><span class="p">,</span><span class="w"> </span><span class="m">800</span><span class="p">),</span><span class="w"> </span><span class="n">main</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">paste0</span><span class="p">(</span><span class="s2">"r1= "</span><span class="p">,</span><span class="w"> </span><span class="n">r</span><span class="p">))</span><span class="w">
</span><span class="c1">## Right panel
</span><span class="n">byg</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">with</span><span class="p">(</span><span class="n">eco</span><span class="p">,</span><span class="w"> </span><span class="n">data.frame</span><span class="p">(</span><span class="n">math</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tapply</span><span class="p">(</span><span class="n">math</span><span class="p">,</span><span class="w"> </span><span class="n">group</span><span class="p">,</span><span class="w"> </span><span class="n">mean</span><span class="p">),</span><span class="w">
</span><span class="n">verbal</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tapply</span><span class="p">(</span><span class="n">verbal</span><span class="p">,</span><span class="w"> </span><span class="n">group</span><span class="p">,</span><span class="w"> </span><span class="n">mean</span><span class="p">)))</span><span class="w">
</span><span class="n">rg</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="nf">round</span><span class="p">(</span><span class="n">cor</span><span class="p">(</span><span class="n">byg</span><span class="o">$</span><span class="n">math</span><span class="p">,</span><span class="w"> </span><span class="n">byg</span><span class="o">$</span><span class="n">verbal</span><span class="p">),</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w">
</span><span class="n">plot</span><span class="p">(</span><span class="n">byg</span><span class="o">$</span><span class="n">math</span><span class="p">,</span><span class="w"> </span><span class="n">byg</span><span class="o">$</span><span class="n">verbal</span><span class="p">,</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row.names</span><span class="p">(</span><span class="n">byg</span><span class="p">),</span><span class="w"> </span><span class="n">pch</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">19</span><span class="p">,</span><span class="w"> </span><span class="n">cex</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">2</span><span class="p">,</span><span class="w">
</span><span class="n">xlim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">400</span><span class="p">,</span><span class="w"> </span><span class="m">800</span><span class="p">),</span><span class="w"> </span><span class="n">ylim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">400</span><span class="p">,</span><span class="w"> </span><span class="m">800</span><span class="p">),</span><span class="w"> </span><span class="n">main</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">paste0</span><span class="p">(</span><span class="s2">"r2= "</span><span class="p">,</span><span class="w"> </span><span class="n">rg</span><span class="p">))</span><span class="w">
</span>
The same, using magrittr
pipes, dplyr
and intubate
(See
intubate <||> R stat functions in data science pipelines for an introduction
to intubate
):
<span class="n">library</span><span class="p">(</span><span class="n">magrittr</span><span class="p">)</span><span class="w">
</span><span class="n">library</span><span class="p">(</span><span class="n">dplyr</span><span class="p">)</span><span class="w">
</span><span class="n">library</span><span class="p">(</span><span class="n">intubate</span><span class="p">)</span><span class="w">
</span><span class="n">eco</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">read.csv</span><span class="p">(</span><span class="n">file</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"../data/LR/eco_corre.csv"</span><span class="p">,</span><span class="w"> </span><span class="n">stringsAsFactors</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">FALSE</span><span class="p">)</span><span class="w">
</span><span class="n">par</span><span class="p">(</span><span class="n">mfrow</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">1</span><span class="p">,</span><span class="m">2</span><span class="p">))</span><span class="w">
</span><span class="c1">## Left panel
</span><span class="n">eco</span><span class="w"> </span><span class="o">%>%</span><span class="w"> </span><span class="n">ntbt</span><span class="p">(</span><span class="n">cor</span><span class="p">,</span><span class="w"> </span><span class="n">math</span><span class="p">,</span><span class="w"> </span><span class="n">verbal</span><span class="p">)</span><span class="w"> </span><span class="o">%>%</span><span class="w"> </span><span class="nf">round</span><span class="p">(</span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="o">-></span><span class="w"> </span><span class="n">r</span><span class="w">
</span><span class="n">eco</span><span class="w"> </span><span class="o">%>%</span><span class="w">
</span><span class="n">ntbt</span><span class="p">(</span><span class="n">plot</span><span class="p">,</span><span class="w"> </span><span class="n">math</span><span class="p">,</span><span class="w"> </span><span class="n">verbal</span><span class="p">,</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">group</span><span class="p">,</span><span class="w"> </span><span class="n">main</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">paste0</span><span class="p">(</span><span class="s2">"r1= "</span><span class="p">,</span><span class="w"> </span><span class="n">r</span><span class="p">),</span><span class="w">
</span><span class="n">xlim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">400</span><span class="p">,</span><span class="w"> </span><span class="m">800</span><span class="p">),</span><span class="w"> </span><span class="n">ylim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">400</span><span class="p">,</span><span class="w"> </span><span class="m">800</span><span class="p">))</span><span class="w">
</span><span class="c1">## Right panel
</span><span class="n">eco</span><span class="w"> </span><span class="o">%>%</span><span class="w">
</span><span class="n">group_by</span><span class="p">(</span><span class="n">group</span><span class="p">)</span><span class="w"> </span><span class="o">%>%</span><span class="w">
</span><span class="n">summarise</span><span class="p">(</span><span class="n">math</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">mean</span><span class="p">(</span><span class="n">math</span><span class="p">),</span><span class="w">
</span><span class="n">verbal</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">mean</span><span class="p">(</span><span class="n">verbal</span><span class="p">))</span><span class="w"> </span><span class="o">-></span><span class="w"> </span><span class="n">byg</span><span class="w">
</span><span class="n">byg</span><span class="w"> </span><span class="o">%>%</span><span class="w"> </span><span class="n">ntbt</span><span class="p">(</span><span class="n">cor</span><span class="p">,</span><span class="w"> </span><span class="n">math</span><span class="p">,</span><span class="w"> </span><span class="n">verbal</span><span class="p">)</span><span class="w"> </span><span class="o">%>%</span><span class="w"> </span><span class="nf">round</span><span class="p">(</span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="o">-></span><span class="w"> </span><span class="n">rg</span><span class="w">
</span><span class="n">byg</span><span class="w"> </span><span class="o">%>%</span><span class="w">
</span><span class="n">ntbt</span><span class="p">(</span><span class="n">plot</span><span class="p">,</span><span class="w"> </span><span class="n">math</span><span class="p">,</span><span class="w"> </span><span class="n">verbal</span><span class="p">,</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">group</span><span class="p">,</span><span class="w"> </span><span class="n">main</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">paste0</span><span class="p">(</span><span class="s2">"r2= "</span><span class="p">,</span><span class="w"> </span><span class="n">rg</span><span class="p">),</span><span class="w">
</span><span class="n">xlim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">400</span><span class="p">,</span><span class="w"> </span><span class="m">800</span><span class="p">),</span><span class="w"> </span><span class="n">ylim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">400</span><span class="p">,</span><span class="w"> </span><span class="m">800</span><span class="p">),</span><span class="w"> </span><span class="n">pch</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">19</span><span class="p">,</span><span class="w"> </span><span class="n">cex</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w">
</span>
-
The left panel contains the raw data, the right panel aggregate data
(means of each group). Ecological correlation means calculating the
correlation from the data in the right panel, instead than from data
in the left panel. -
Why do you think someone would like to use the data on the right instead
of the one on the left? -
Superimposing both scatterplots:
<span class="n">eco</span><span class="w"> </span><span class="o">%>%</span><span class="w">
</span><span class="n">ntbt</span><span class="p">(</span><span class="n">plot</span><span class="p">,</span><span class="w"> </span><span class="n">math</span><span class="p">,</span><span class="w"> </span><span class="n">verbal</span><span class="p">,</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">group</span><span class="p">,</span><span class="w">
</span><span class="n">main</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">paste0</span><span class="p">(</span><span class="s2">"r1= "</span><span class="p">,</span><span class="w"> </span><span class="n">r</span><span class="p">,</span><span class="w"> </span><span class="s2">"; r2= "</span><span class="p">,</span><span class="w"> </span><span class="n">rg</span><span class="p">),</span><span class="w">
</span><span class="n">xlim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">400</span><span class="p">,</span><span class="w"> </span><span class="m">800</span><span class="p">),</span><span class="w"> </span><span class="n">ylim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">400</span><span class="p">,</span><span class="w"> </span><span class="m">800</span><span class="p">))</span><span class="w">
</span><span class="n">byg</span><span class="w"> </span><span class="o">%>%</span><span class="w">
</span><span class="n">ntbt</span><span class="p">(</span><span class="n">points</span><span class="p">,</span><span class="w"> </span><span class="n">math</span><span class="p">,</span><span class="w"> </span><span class="n">verbal</span><span class="p">,</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">group</span><span class="p">,</span><span class="w"> </span><span class="n">pch</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">19</span><span class="p">,</span><span class="w"> </span><span class="n">cex</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w">
</span>
-
Ecological correlations: based on rates or averages (used
in political science and sociology). They tend to overstate
the strength of an association. -
Correlations based on rates or averages can be misleading.
-
This ends our discussion about Ecological correlations. We will continue
with “normal” correlations from now on. -
Question (for the expert in you): you are presented with the following plots
(below), and asked, due to your expertise, to determine which of the panels
corresponds to data with a higher correlation coefficient (in absolute value).
What would be your answer?
Changing SDs
-
The appearance of a scatter diagram depends on the SDs. In fact, both plots
above were generated with the same $r = 0.7$. The difference is that the
one on the left had $\sigma_X = 1.1$ and $\sigma_Y = 0.3$, while the one on
the right had $\sigma_X = 1$ and $\sigma_Y = 1.3$.
However, the left one looks more tightly clustered than the other. It is due
to the SDs, not $r$ (code in Appendix). -
Calculating $r$ involves converting the variables to standard units
where deviations from average are divided by the standard deviation. -
$r$ measures clustering in relative terms (relative to the SDs) and not in
absolute terms. -
By the way, how do you feel, from now on, about guessing values of $r$ by
looking at the scatterplot?
Discussion on calculation of the standard deviation
For simplicity, FPP use, unless it was a very small sample, SD instead of sd.
SD is obtained by dividing by $n$ instead of by $n – 1$ (R has the
function sd
for the latter, and no function for the former).
Anyway, FPP clearly note (later for not confusing people with
technicalities on a book with just a few formulas),
that for small samples one should divide by $n – 1$.
To satisfy people who considers this an important issue,
let us mention that the correct one is the one obtained by
dividing by $n-1$ (because the associated sample variance
is an unbiased estimator of the population variance, while the
other is biased). On the other hand, if the points are
the population (not a sample from it),
the correct is the one dividing by $n$.
- By the way, as we are mentioning it, what does it mean that an
estimator is unbiased?
However, the difference is, on cases say with about 40-50 data points or more,
negligible (if you are using the right kind of data, which is what you should
be doing), and in the case of Pearson’s data (1,078) the terrible error
committed by using SD instead of sd is:
<span class="c1">## FPP version of sample standard deviation
</span><span class="n">SD</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="k">function</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="w"> </span><span class="nf">sqrt</span><span class="p">(</span><span class="n">mean</span><span class="p">((</span><span class="n">x</span><span class="o">-</span><span class="n">mean</span><span class="p">(</span><span class="n">x</span><span class="p">))</span><span class="o">^</span><span class="m">2</span><span class="p">))</span><span class="w">
</span><span class="c1">## "Error" of using SD instead of "correct" sd
</span><span class="n">SD</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">sd</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="w">
</span>
## [1] -0.001273425
<span class="n">SD</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">sd</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="w">
</span>
## [1] -0.001305823
Is that 1/1000 of an inch?
Perhaps, there are far more worse errors one can commit (using data
unsuitable to the statistical procedure comes to mind, or the other way
around, using an unsuitable statistical procedure for the data that, after
all, should drive the analysis), and insisting
too much in technicalities such as this can make statistics rely too
much in mathematical niceties, and too little on substance (just in case,
know that I do not expect that you agree with me in any kind of
remark I make. In fact, many of my remarks are just a consequence of
my lack of certainty about which should be the correct answer).
By the way, the maximum likelihood estimator of the variance also divides by
$n$ instead of $n-1$, so it is biased (and used).
We will show both approaches, that lead mostly to the same final results,
pointing out when they disagree.
The SD line
-
The SD line goes through the point of averages, passing
through the points which are an equal number of SDs away from the average,
for each variable. -
This means that, if you move $n$ $\text{SD}_X$ to the right of $(\bar{X}, \bar{Y})$
and then $n$ $\text{SD}_Y$ above (or below if $r$ is negative)
your previous position, you end on a point of the SD line. -
We can find the SD line knowing that it passes throught two points:
[
\frac{y-y_0}{x-x_0}=\frac{y_1-y_0}{x_1-x_0}
]
using the points $(\bar{x},\bar{y})$ and $(\bar{x}+\text{SD}_x,\bar{y}+\text{SD}_y)$
[
\frac{y-\bar{y}}{x-\bar{x}}=\frac{\bar{y}+\text{SD}_y-\bar{y}}{\bar{x}+\text{SD}_x-\bar{x}}
\frac{y-\bar{y}}{x-\bar{x}}=\frac{\text{SD}_y}{\text{SD}_x}
y-\bar{y}=\frac{\text{SD}_y}{\text{SD}_x} (x-\bar{x})
]
Finally, the SD line using $\text{SD}$ is:
[
y=\frac{\text{SD}_y}{\text{SD}_x} x+\bar{y}-\frac{\text{SD}_y}{\text{SD}_x}\bar{x}
]
where $\frac{\text{SD}_y}{\text{SD}_x}$ is the slope and $\bar{y}-\frac{\text{SD}_y}{\text{SD}_x}\bar{x}$
is the intercept.
Of course, the same line is obtained using $\text{sd}$ instead of $\text{SD}$ (why?):
[
y=\frac{\text{sd}_y}{\text{sd}_x} x+\bar{y}-\frac{\text{sd}_y}{\text{sd}_x}\bar{x}
]
where $\frac{\text{sd}_y}{\text{sd}_x}$ is the slope and $\bar{y}-\frac{\text{sd}_y}{\text{sd}_x}\bar{x}$
is the intercept.
<span class="c1">## SD line using equation and FFP SD
</span><span class="n">abline</span><span class="p">(</span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">meany</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">SD</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">/</span><span class="n">SD</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">*</span><span class="n">meanx</span><span class="p">,</span><span class="w">
</span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">SD</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">/</span><span class="n">SD</span><span class="p">(</span><span class="n">x</span><span class="p">),</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"blue"</span><span class="p">,</span><span class="w"> </span><span class="n">lwd</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">4</span><span class="p">)</span><span class="w">
</span><span class="c1">## SD line using equation and sd
</span><span class="n">abline</span><span class="p">(</span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">meany</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">sd</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">/</span><span class="n">sd</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">*</span><span class="n">meanx</span><span class="p">,</span><span class="w">
</span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">sd</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">/</span><span class="n">sd</span><span class="p">(</span><span class="n">x</span><span class="p">),</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"blue"</span><span class="p">,</span><span class="w"> </span><span class="n">lwd</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">4</span><span class="p">)</span><span class="w">
</span>
-
Note that we have plotted the SD line twice, using $\text{SD}$ and $\text{sd}$,
obtaining the same result. -
T or F: If you move one SDx to the right of the point of
averages, would it be your best guess (prediction) of the
son’s height the corresponding point on the SD line?
The graph of averages
- If you partition your $x$ axis let’s say at every inch, the graph of
averages is the collection of points where the $x$-coordinate is the
center of the vertical strip, and the $y$-coordinate the mean of all
the $y$-values contained in that strip. (Of course your selection of
a different strip width will give a different result, as it happens
with histograms)
<span class="c1">## Graph of averages.
</span><span class="n">sgav</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">with</span><span class="p">(</span><span class="n">father.son</span><span class="p">,</span><span class="w"> </span><span class="n">tapply</span><span class="p">(</span><span class="n">sheight</span><span class="p">,</span><span class="w"> </span><span class="nf">round</span><span class="p">(</span><span class="n">fheight</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">),</span><span class="w"> </span><span class="n">mean</span><span class="p">))</span><span class="w">
</span><span class="n">sgavnum</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">with</span><span class="p">(</span><span class="n">father.son</span><span class="p">,</span><span class="w"> </span><span class="n">tapply</span><span class="p">(</span><span class="n">sheight</span><span class="p">,</span><span class="w"> </span><span class="nf">round</span><span class="p">(</span><span class="n">fheight</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">),</span><span class="w"> </span><span class="n">length</span><span class="p">))</span><span class="w">
</span><span class="n">points</span><span class="p">(</span><span class="nf">as.numeric</span><span class="p">(</span><span class="nf">names</span><span class="p">(</span><span class="n">sgav</span><span class="p">)),</span><span class="w"> </span><span class="n">sgav</span><span class="p">,</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"red"</span><span class="p">,</span><span class="w"> </span><span class="n">pch</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">16</span><span class="p">)</span><span class="w">
</span><span class="n">text</span><span class="p">(</span><span class="nf">as.numeric</span><span class="p">(</span><span class="nf">names</span><span class="p">(</span><span class="n">sgav</span><span class="p">)),</span><span class="w"> </span><span class="n">sgav</span><span class="p">,</span><span class="w"> </span><span class="n">sgavnum</span><span class="p">,</span><span class="w"> </span><span class="n">pos</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">3</span><span class="p">)</span><span class="w">
</span>
-
The GoA is close to a straight line in the middle, but not at the ends.
Why do you think that happens? -
T or F: If we add to the GoA plot the SD line, would it more or less
follow the GoA?
The Regression line and the Regression function
- The regression line is a smoothed version of the graph of averages.
If the graph of averages follows a straight line (as happens on
a scatterplot that is a football-shaped cloud of points),
that straight line is the regression line.
-
In general, we could say that the regression
function (meaning not limited to a straight line)
estimates the average value for $y$ corresponding to each value of $x$. -
More formally, and implying that we are making probability assumptions
on $Y$ (that we will see in future notes when turning to a more boring – I mean
rigorous – stage), the regression function is the conditional
expectation of $Y$ given $X=x$, or $\text{E}[Y|X=x]$. -
Repeter avec moi: The regression function is the conditional expectation
of $Y$ given $X=x$. -
Informally (I think, but I may be wrong…) we could say that the graph
of averages is a “discrete” version (as it depends on the width
of the strip) of the regression function
(linear or non linear), and that if we could make the width of the
strips go to zero, they should agree (provided we have an infinite number
of points so we always have points inside the strips as their width vanishes). -
Keep in mind that the regression line may smooth away too much.
For example, if there is a non-linear association between the two variables,
the regression line will pass it by.
(We will see that there are situations where we can transform the data
and still use linear regression. If not, we need to move to other
non-linear methodologies). -
Anyway, the graph of averages should always work.
-
We have related GoA and regression line. Is there any relation between
SD line and regression line? -
OK, I did not show you the equation of the regression line (the
one that is good for football-shaped clouds of points). We are going
to give here a version that we will accept without proof.
Later, we will formally derive another version that relies on calculus,
and you will then be asked to reconcile both versions. Here it goes:
[
y = r\frac{\text{SD}_y}{\text{SD}_x}x +
\bar{y} – r\frac{\text{SD}_y}{\text{SD}_x}\bar{x}
]
Or, using $\text{sd}$:
[
y = r\frac{\text{sd}_y}{\text{sd}_x}x +
\bar{y} – r\frac{\text{sd}_y}{\text{sd}_x}\bar{x}
] -
If you already forgot (I would have), the equation of the SD line follows:
[
y = \frac{\text{SD}_y}{\text{SD}_x}x +
\bar{y} – \frac{\text{SD}_y}{\text{SD}_x}\bar{x}
]
- Then, do you see any relation between SD line and regression line?
While you think we will put everything in one plot, showing the equation
of the regression line:
<span class="n">abline</span><span class="p">(</span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">meany</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">r</span><span class="o">*</span><span class="n">sd</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">/</span><span class="n">sd</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">*</span><span class="n">meanx</span><span class="p">,</span><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">r</span><span class="o">*</span><span class="n">sd</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">/</span><span class="n">sd</span><span class="p">(</span><span class="n">x</span><span class="p">),</span><span class="w">
</span><span class="n">lwd</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">4</span><span class="p">,</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"red"</span><span class="p">)</span><span class="w">
</span>
-
The regression line is an attenuated version of the SD line. In the SD line,
when you move 1 SDx to the right, you go 1 SDx above (or below for negative $r$).
In the regression line, you only go $r$ SDy above (or below). -
Question that is still unanswered from the beginning: we said that
the correlation coefficient is a measure of linear association,
or clustering about a line. Which is the line? -
Answer:
- It is the SD line.
Appendix
Complete code for ecological correlations
<span class="c1">## Generating correlated Normal data
</span><span class="n">diffr</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="k">function</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">rho</span><span class="p">,</span><span class="w"> </span><span class="n">SDx</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">SDy</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w">
</span><span class="n">meanx</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="n">meany</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="m">3</span><span class="w">
</span><span class="n">x</span><span class="m">1</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">rnorm</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w">
</span><span class="n">x</span><span class="m">2</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">rnorm</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w">
</span><span class="n">x</span><span class="m">3</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">rho</span><span class="o">*</span><span class="n">x</span><span class="m">1</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nf">sqrt</span><span class="p">(</span><span class="m">1</span><span class="o">-</span><span class="n">rho</span><span class="o">^</span><span class="m">2</span><span class="p">)</span><span class="o">*</span><span class="n">x</span><span class="m">2</span><span class="w">
</span><span class="n">x</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">meanx</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">SDx</span><span class="o">*</span><span class="n">x</span><span class="m">1</span><span class="w">
</span><span class="n">y</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">meany</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">SDy</span><span class="o">*</span><span class="n">x</span><span class="m">3</span><span class="w">
</span><span class="n">r</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="nf">round</span><span class="p">(</span><span class="n">cor</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">y</span><span class="p">),</span><span class="w"> </span><span class="m">3</span><span class="p">)</span><span class="w">
</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">y</span><span class="p">,</span><span class="w"> </span><span class="n">xlim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">0</span><span class="p">,</span><span class="m">6</span><span class="p">),</span><span class="w"> </span><span class="n">ylim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">0</span><span class="p">,</span><span class="m">6</span><span class="p">),</span><span class="w">
</span><span class="n">xaxs</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"i"</span><span class="p">,</span><span class="w"> </span><span class="n">yaxs</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"i"</span><span class="p">)</span><span class="w">
</span><span class="p">}</span><span class="w">
</span>
<span class="n">set.seed</span><span class="p">(</span><span class="m">1</span><span class="p">)</span><span class="w">
</span><span class="n">par</span><span class="p">(</span><span class="n">mai</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">.2</span><span class="p">,</span><span class="w"> </span><span class="m">.2</span><span class="p">,</span><span class="w"> </span><span class="m">.2</span><span class="p">,</span><span class="w"> </span><span class="m">.2</span><span class="p">),</span><span class="w"> </span><span class="n">mgp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">1.5</span><span class="p">,</span><span class="w"> </span><span class="m">0.2</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">),</span><span class="w">
</span><span class="n">tck</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">-.01</span><span class="p">,</span><span class="w"> </span><span class="n">mfrow</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">1</span><span class="p">,</span><span class="m">2</span><span class="p">))</span><span class="w">
</span><span class="n">diffr</span><span class="p">(</span><span class="n">rho</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0.70</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">50</span><span class="p">,</span><span class="w"> </span><span class="n">SDx</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1.1</span><span class="p">,</span><span class="w"> </span><span class="n">SDy</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">.3</span><span class="p">)</span><span class="w">
</span><span class="n">diffr</span><span class="p">(</span><span class="n">rho</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0.70</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">50</span><span class="p">,</span><span class="w"> </span><span class="n">SDx</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">SDy</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1.3</span><span class="p">)</span><span class="w">
</span>
Complete code to produce the SD line plot
<span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">y</span><span class="p">,</span><span class="w">
</span><span class="n">xlim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">58</span><span class="p">,</span><span class="w"> </span><span class="m">80</span><span class="p">),</span><span class="w"> </span><span class="n">ylim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">58</span><span class="p">,</span><span class="w"> </span><span class="m">80</span><span class="p">),</span><span class="w">
</span><span class="n">xaxt</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"n"</span><span class="p">,</span><span class="w"> </span><span class="n">yaxt</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"n"</span><span class="p">,</span><span class="w"> </span><span class="n">xaxs</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"i"</span><span class="p">,</span><span class="w"> </span><span class="n">yaxs</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"i"</span><span class="p">,</span><span class="w">
</span><span class="n">main</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"Pearson's data. SD line"</span><span class="p">,</span><span class="w">
</span><span class="n">xlab</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"Father height in inches"</span><span class="p">,</span><span class="w"> </span><span class="n">ylab</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"Son height in inches"</span><span class="p">)</span><span class="w">
</span><span class="n">axp</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">seq</span><span class="p">(</span><span class="m">58</span><span class="p">,</span><span class="w"> </span><span class="m">80</span><span class="p">,</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w">
</span><span class="n">axis</span><span class="p">(</span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">at</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">axp</span><span class="p">,</span><span class="w"> </span><span class="n">labels</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">axp</span><span class="p">)</span><span class="w">
</span><span class="n">axis</span><span class="p">(</span><span class="m">2</span><span class="p">,</span><span class="w"> </span><span class="n">at</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">axp</span><span class="p">,</span><span class="w"> </span><span class="n">labels</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">axp</span><span class="p">)</span><span class="w">
</span><span class="c1">## Spread of the cloud
</span><span class="n">abline</span><span class="p">(</span><span class="n">v</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">meanx</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">-3</span><span class="p">,</span><span class="w"> </span><span class="m">-2</span><span class="p">,</span><span class="w"> </span><span class="m">-1</span><span class="p">,</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="m">2</span><span class="p">,</span><span class="w"> </span><span class="m">3</span><span class="p">)</span><span class="o">*</span><span class="n">sd</span><span class="p">(</span><span class="n">x</span><span class="p">),</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"blue"</span><span class="p">,</span><span class="w"> </span><span class="n">lty</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">3</span><span class="p">)</span><span class="w">
</span><span class="n">abline</span><span class="p">(</span><span class="n">h</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">meany</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">-3</span><span class="p">,</span><span class="w"> </span><span class="m">-2</span><span class="p">,</span><span class="w"> </span><span class="m">-1</span><span class="p">,</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="m">2</span><span class="p">,</span><span class="w"> </span><span class="m">3</span><span class="p">)</span><span class="o">*</span><span class="n">sd</span><span class="p">(</span><span class="n">y</span><span class="p">),</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"blue"</span><span class="p">,</span><span class="w"> </span><span class="n">lty</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">3</span><span class="p">)</span><span class="w">
</span><span class="c1">## Point of averages (center of the cloud)
</span><span class="n">abline</span><span class="p">(</span><span class="n">v</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">meanx</span><span class="p">,</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"green"</span><span class="p">)</span><span class="w">
</span><span class="n">abline</span><span class="p">(</span><span class="n">h</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">meany</span><span class="p">,</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"green"</span><span class="p">)</span><span class="w">
</span><span class="c1">## SD line using equation and FFP SD
</span><span class="n">abline</span><span class="p">(</span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">meany</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">SD</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">/</span><span class="n">SD</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">*</span><span class="n">meanx</span><span class="p">,</span><span class="w">
</span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">SD</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">/</span><span class="n">SD</span><span class="p">(</span><span class="n">x</span><span class="p">),</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"blue"</span><span class="p">,</span><span class="w"> </span><span class="n">lwd</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">4</span><span class="p">)</span><span class="w">
</span><span class="c1">## SD line using equation and sd
</span><span class="n">abline</span><span class="p">(</span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">meany</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">sd</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">/</span><span class="n">sd</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">*</span><span class="n">meanx</span><span class="p">,</span><span class="w">
</span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">sd</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">/</span><span class="n">sd</span><span class="p">(</span><span class="n">x</span><span class="p">),</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"blue"</span><span class="p">,</span><span class="w"> </span><span class="n">lwd</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">4</span><span class="p">)</span><span class="w">
</span>
Complete code to produce points in relation to the SD line plot
<span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">y</span><span class="p">,</span><span class="w">
</span><span class="n">xlim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">58</span><span class="p">,</span><span class="w"> </span><span class="m">80</span><span class="p">),</span><span class="w"> </span><span class="n">ylim</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">58</span><span class="p">,</span><span class="w"> </span><span class="m">80</span><span class="p">),</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"lightgrey"</span><span class="p">,</span><span class="w">
</span><span class="n">xaxt</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"n"</span><span class="p">,</span><span class="w"> </span><span class="n">yaxt</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"n"</span><span class="p">,</span><span class="w"> </span><span class="n">xaxs</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"i"</span><span class="p">,</span><span class="w"> </span><span class="n">yaxs</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"i"</span><span class="p">,</span><span class="w">
</span><span class="n">main</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"Pearson's data. SD line"</span><span class="p">,</span><span class="w">
</span><span class="n">xlab</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"Father height in inches"</span><span class="p">,</span><span class="w"> </span><span class="n">ylab</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"Son height in inches"</span><span class="p">)</span><span class="w">
</span><span class="n">axp</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">seq</span><span class="p">(</span><span class="m">58</span><span class="p">,</span><span class="w"> </span><span class="m">80</span><span class="p">,</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w">
</span><span class="n">axis</span><span class="p">(</span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">at</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">axp</span><span class="p">,</span><span class="w"> </span><span class="n">labels</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">axp</span><span class="p">)</span><span class="w">
</span><span class="n">axis</span><span class="p">(</span><span class="m">2</span><span class="p">,</span><span class="w"> </span><span class="n">at</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">axp</span><span class="p">,</span><span class="w"> </span><span class="n">labels</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">axp</span><span class="p">)</span><span class="w">
</span><span class="c1">## Spread of the cloud
</span><span class="n">abline</span><span class="p">(</span><span class="n">v</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">meanx</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">-2</span><span class="p">,</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="o">*</span><span class="n">sd</span><span class="p">(</span><span class="n">x</span><span class="p">),</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"blue"</span><span class="p">,</span><span class="w"> </span><span cla...
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.