Scalable plotting with ggplot2 – Part I

[This article was first published on Rsome - A blog about some R stuff, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.


This series discusses how we can use ggplot2 to produce plots for each column
of a data frame that depend on characteristics of this column
(e.g. the class of a column) in a scalable manner.
To this end, we integrate the following concepts / functions:

  • the ggplot2 package
  • lapply
  • anonymous functions
  • non-standard evaluation
  • lexical scoping

The reader should be familiar with these concepts, otherwise, Hadley Wickham’s
Advanced R might be a good starting point to read
up on all but the first topic.

The approach discussed here generalizes to other situations in which one wants
to customize plots based on the characteristics of input data.

The problem

For this blog post, we are going to use a subset of the diamonds data set.

source("multiplot.R") #
dta <- select(diamonds, price, cut, carat, color)
## # A tibble: 6 × 4
##   price       cut carat color
## 1   326     Ideal  0.23     E
## 2   326   Premium  0.21     E
## 3   327      Good  0.23     E
## 4   334   Premium  0.29     I
## 5   335      Good  0.31     J
## 6   336 Very Good  0.24     J

Now, imagine you want a visual summary for each variable. Unfortunately,
the variables are not all of the same class. Otherwise, you might transform the
data into long format and use facets.
For the factors, you could do a bar chart, for the numerical variables, you might want to
use a density plot. Let’s have a look at a first approach. You could do the
following for cut and color.

p1 <- ggplot(dta, aes(cut))   + geom_bar()
p2 <- ggplot(dta, aes(color)) + geom_bar()

Similarly, you can do for price and carat

p3 <- ggplot(dta, aes(price)) + geom_density()
p4 <- ggplot(dta, aes(carat)) + geom_density()
# create a plot with 4 panels
multiplot(p1, p2, p3, p4, cols = 2)

Now, you can note two issues:

  • There is a lot of code duplication. For each plot, you need another line of
    code that is almost identical to the ones you have already. This is not
    scalable to data sets with many columns. This problem will be addressed in this
  • You might want to further customize your plots. For
    example, changing the x-axis of the density plots from linear to logarithmic
    might be desirable to make better use of space. This problem will be addressed
    in the second part of the series.

A solution

To address the first problem, we can create a function that
behaves differently depending on whether the input is factorial or numeric.

# a function that returns geom_density if the input is numeric, 
# geom_bar otherwise
geom_hist_or_bar <- function() {
  if(current_class() %in% c("integer", "numeric")) {
  } else {

current_class is a function that magically gets the class of the variable
that you used in aes of ggplot. It will be explained at a later stage.
Having defined that function, you could rewrite the above as follows:

ggplot(dta, aes(color)) + geom_hist_or_bar()
ggplot(dta, aes(cut))   + geom_hist_or_bar()
ggplot(dta, aes(price)) + geom_hist_or_bar()
ggplot(dta, aes(carat)) + geom_hist_or_bar()

This is a slight improvement on the first solution because you always call the
same functions for all plots. Hence, we can kind of use an apply approach to
reduce the redundancy of this problem. You might think of the following:

lapply(dta, function(g) ggplot(dta, aes(g)) + geom_hist_or_bar)

Unfortunately, this does not quite work because for each iteration in
lapply, g will be the actual
values from each column, but in aes, you need the name of the column, not the
actual value. Since there is no way to get from the values to the names, but
if we have the names, we can get the values, the trick is to loop over the names
of the data frame.

lapply(names(dta), function(g) ggplot(dta, aes(g)) + geom_hist_or_bar)

However, we are not quite there yet. Due to non-standard evaluation, we need to
further change two things:

  • use aes_ instead of aes so g is not actually g, but points to something
  • use instead of g because g is just the name of an object (i.e.
    “cut” for the first iteration), not the object itself.
lapply(names(dta), function(g) {
  ggplot(dta, aes_( + 
    geom_hist_or_bar() +

The only explanation I still owe you is how the function current_class() works.
It only works because it is called from within lapply.
Hence, the parent frame of current_class (the function that calls
current_class) has lapply as its parent. For a given iteration,
the value of g is available in the environment of lapply. currrent_class
simply needs to go up the tree until it reaches the environment of lapply
and get the value of g and figure out it’s class. That is done as follows.

current_class <- function() {
  # returns the first class of the current iteration*
  class(dta[[get("g", parent.frame(n = 2))]])[1]
# * first element since object can have multiple classes

Now, we are done. This is all code we need to get our solution.

##  ............................................................................
##  get set up
source("multiplot.R") #

##  ............................................................................
##  define helper functions
current_class <- function() {
  # returns the first class of the current iteration*
  class(dta[[get("g", parent.frame(n = 2))]])[1]
# * first element since object can have multiple classes

geom_hist_or_bar <- function() {
  color <- "gray"
  if (current_class() %in% c("integer", "numeric")) {
  geom_density(color = color, fill = color)
  } else if(current_class() %in% c("factor", "ordered")){
  geom_bar(color = color, fill = color)

##  ............................................................................
##  create all plots
all_plots <- lapply(names(dta), function(g) {
  ggplot(dta, aes_( + 

Finally, we can plot the result.

# use plotlist not ... as input"multiplot", list(plotlist = all_plots, cols = 2)) 


In this blog post, a few advanced concepts from the R toolbox were integrated
in order to create column-wise visual data summaries. To this end, we
created a set of functions which can be used to generate plots for different
data types (numerical and factorial).
This set of functions can be used in conjunction with lapply to
create summary plots, which would not be possible if different functions had to
be called for the different data types. The solution presented above is
scalable to data sets with an arbitrary number of columns without altering the


We will expand on this by customizing the appearance of the plots further.
Namely, the second part of the series centers on using a log-transformed
x-scale for continuous data and how to generate appropriate breaks, but the
principles we will develop there can be generalized well to other customization

To leave a comment for the author, please follow the link and comment on their blog: Rsome - A blog about some R stuff. offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)