# Time Series Analysis Using Max/Min… and some Neuroscience.

**R - Data Science Heroes Blog**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

### Introduction

Time series have **maximum** and **minimum** points as general patterns. Sometimes the noise present on it causes problems to spot general behavior.

In this post, we will **smooth** time series -reducing noise- to maximize the story that data has to tell us. And then, an easy formula will be applied to find and plot max/min points thus characterize data.

### What we have

# reading data sources, 2 time series t1=read.csv("ts_1.txt") t2=read.csv("ts_2.txt") # plotting... plot(t1$ts1, type = 'l') plot(t2$ts2, type = 'l')

As you can see there are many peaks, but intuitively you can imagine a more smoother line crossing in the middle of the points. This can achieved by applying a **Seasonal Trend Decomposition** (STL).

### Smoothing the series

# first create the time series object, with frequency = 50, and then apply the stl function. stl_1=stl(ts(t1$ts1, frequency=50), "periodic") stl_2=stl(ts(t2$ts2, frequency=50), "periodic")

*Important*: If you don’t know the `frequency`

beforehand, play a little bit with this parameter until you find a result in which you are comfortable.

### Finding max and min

Creating the functions…

ts_max<-function(signal) { points_max=which(diff(sign(diff(signal)))==-2)+1 return(points_max) } ts_min<-function(signal) { points_min=which(diff(sign(diff(-signal)))==-2)+1 return(points_min) }

### Visualizing the results!

trend_1=as.numeric(stl_1$time.series[,2]) max_1=ts_max(trend_1) min_1=ts_min(trend_1) ## Plotting final results plot(trend_1, type = 'l') abline(v=max_1, col="red") abline(v=min_1, col="blue")

With the line: `stl_1$time.series[,2]`

we are accessing the time series `trend`

component. This is the smoothing method we will use, but there are others.

This first series has 3 maximums *(red line)* and 2 minimums *(blue line)* in the following places:

# When the max points occurs: max_1

# When the min points occurs: min_1

### Comparing two time series

trend_2=as.numeric(stl_2$time.series[,2]) max_2=ts_max(trend_2) min_2=ts_min(trend_2) # create two aligned plots par(mfrow=c(2,1)) ## Plotting series 1 plot(trend_1, type = 'l') abline(v=max_1, col="red") abline(v=min_1, col="blue") ## Plotting series 2 plot(trend_2, type = 'l') abline(v=max_2, col="red") abline(v=min_2, col="blue")

Some **conclusions** from both plots:

`Series 2`

starts with a`min`

while 1 does with a`max`

`Series 1`

has 3`max`

and 2`min`

, just the opposite to the other series

Why is this important? Because of the nature of the data, which is in next section.

### What is this data about?

`ts1`

and `ts2`

are two typical responses to a brain stimulus, in other words: what happens with the brain when a person looks at a picture / move a finger / think in a particular thing, etc... Electroencephalography.

Some studies in **neuroscience** focus on averaging several responses to one stimulus -for example, to look at one particular picture. They present several times a particular image to the person. Averaging all of these signal/time series, you get the **typical response**.

Then you can **predict** based on the similarity between this **typical response** and the **new image** (stimulus) that the person is looking at.

#### Typical response (or Event Related Potential)

It's important to get the **when** the positive peaks occur. In this case they are: `P1`

, `P2`

and `P3`

. The same goes for the negative ones.

Wiki: Event related potential.

*Note: It´s a common practice to invert negative and positive values.*

#### Finally...

Typically the signal time length for this kind of studies last for **400ms**, thus 1 point per millisecond, just the displayed plots. And the amplitude is in **volts**, *(actually micro-volts)*. The same unit of measurement used by the notebook you are using now 😉

###### that's all!

**leave a comment**for the author, please follow the link and comment on their blog:

**R - Data Science Heroes Blog**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.