# Bayesian Optimization of Machine Learning Models

**Revolutions**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

by Max Kuhn: Director, Nonclinical Statistics, Pfizer

Many predictive and machine learning models have structural or *tuning* parameters that cannot be directly estimated from the data. For example, when using *K*-nearest neighbor model, there is no analytical estimator for *K* (the number of neighbors). Typically, resampling is used to get good performance estimates of the model for a given set of values for *K* and the one associated with the best results is used. This is basically a grid search procedure. However, there are other approaches that can be used. I’ll demonstrate how Bayesian optimization and Gaussian process models can be used as an alternative.

To demonstrate, I’ll use the regression simulation system of Sapp et al. (2014) where the predictors (i.e. `x`

’s) are independent Gaussian random variables with mean zero and a variance of 9. The prediction equation is:

x_1 + sin(x_2) + log(abs(x_3)) + x_4^2 + x_5*x_6 + I(x_7*x_8*x_9 < 0) + I(x_10 > 0) + x_11*I(x_11 > 0) + sqrt(abs(x_12)) + cos(x_13) + 2*x_14 + abs(x_15) + I(x_16 < -1) + x_17*I(x_17 < -1) - 2 * x_18 - x_19*x_20

The random error here is also Gaussian with mean zero and a variance of 9. This simulation is available in the `caret`

package via a function called `SLC14_1`

. First, we’ll simulate a training set of 250 data points and also a larger set that we will use to elucidate the true parameter surface:

> library(caret) > set.seed(7210) > train_dat <- SLC14_1(250) > large_dat <- SLC14_1(10000)

We will use a radial basis function support vector machine to model these data. For a fixed epsilon, the model will be tuned over the cost value and the radial basis kernel parameter, commonly denotes as `sigma`

. Since we are simulating the data, we can figure out a good approximation to the relationship between these parameters and the root mean squared error (RMSE) or the model. Given our specific training set and the larger simulated sample, here is the RMSE surface for a wide range of values:

There is a wide range of parameter values that are associated with very low RMSE values in the northwest.

A simple way to get an initial assessment is to use random search where a set of random tuning parameter values are generated across a “wide range”. For a RBF SVM, `caret`

’s `train`

function defines wide as cost values between `2^c(-5, 10)`

and `sigma`

values inside the range produced by the `sigest`

function in the `kernlab`

package. This code will do 20 random sub-models in this range:

> rand_ctrl <- trainControl(method = "repeatedcv", repeats = 5, + search = "random") > > set.seed(308) > rand_search <- train(y ~ ., data = train_dat, + method = "svmRadial", + ## Create 20 random parameter values + tuneLength = 20, + metric = "RMSE", + preProc = c("center", "scale"), + trControl = rand_ctrl) > rand_search Support Vector Machines with Radial Basis Function Kernel 250 samples 20 predictor Pre-processing: centered (20), scaled (20) Resampling: Cross-Validated (10 fold, repeated 5 times) Summary of sample sizes: 226, 224, 224, 225, 226, 224, ... Resampling results across tuning parameters: sigma C RMSE Rsquared 0.01161955 42.75789360 10.50838 0.7299837 0.01357777 67.97672171 10.71276 0.7212605 0.01392676 828.08072944 10.75235 0.7195869 0.01394119 0.18386619 18.56921 0.2109284 0.01538656 0.05224914 19.33310 0.1890599 0.01711920 228.59215128 11.09522 0.7047713 0.01790202 0.78835920 16.78597 0.3217203 0.01936110 0.91401289 16.45485 0.3492278 0.02023763 0.07658831 19.03987 0.2081059 0.02690269 0.04128731 19.33974 0.2126950 0.02780880 0.64865483 16.52497 0.3545042 0.02920113 974.08943821 12.22906 0.6508754 0.02963586 1.19350198 15.46690 0.4407725 0.03370625 31.45179445 12.60653 0.6314384 0.03561750 0.04970422 19.23564 0.2306298 0.03752561 0.06592800 19.07130 0.2375616 0.03783570 398.44599747 12.92958 0.6143790 0.04534046 3.91017571 13.56612 0.5798001 0.05171719 296.65916049 13.88865 0.5622445 0.06482201 47.31716568 14.66904 0.5192667 RMSE was used to select the optimal model using the smallest value. The final values used for the model were sigma = 0.01161955 and C = 42.75789. > ggplot(rand_search) + scale_x_log10() + scale_y_log10() > getTrainPerf(rand_search) TrainRMSE TrainRsquared method 1 10.50838 0.7299837 svmRadial

There are other approaches that we can take, including a more comprehensive grid search or using a nonlinear optimizer to find better values of cost and `sigma`

. Another approach is to use Bayesian optimization to find good values for these parameters. This is an optimization scheme that uses Bayesian models based on Gaussian processes to predict good tuning parameters.

Gaussian Process (GP) regression is used to facilitate the Bayesian analysis. If creates a regression model to formalize the relationship between the outcome (RMSE, in this application) and the SVM tuning parameters. The standard assumption regarding normality of the residuals is used and, being a Bayesian model, the regression parameters also gain a prior distribution that is multivariate normal. The GP regression model uses a kernel basis expansion (much like the SVM model does) in order to allow the model to be nonlinear in the SVM tuning parameters. To do this, a radial basis function kernel is used for the covariance function of the multivariate normal prior and maximum likelihood is used to estimate the kernel parameters of the GP.

In the end, the GP regression model can take the current set of resampled RMSE values and make predictions over the entire space of potential cost and `sigma`

parameters. The Bayesian machinery allows of this prediction to have a *distribution*; for a given set of tuning parameters, we can obtain the estimated mean RMSE values as well as an estimate of the corresponding prediction variance. For example, if we were to use our data from the random search to build a GP model, the predicted mean RMSE would look like:

The darker regions indicate smaller RMSE values given the current resampling results. The predicted standard deviation of the RMSE is:

The prediction noise becomes larger (e.g. darker) as we move away from the current set of observed values.

(The `GPfit`

package was used to create these models.)

To find good parameters to test, there are several approaches. This paper (pdf) outlines several but we will use the *confidence bound* approach. For any combination of cost and `sigma`

, we can compute the lower confidence bound of the predicted RMSE. Since this takes the uncertainty of prediction into account it has the potential to produce better directions to take the optimization. Here is a plot of the confidence bound using a single standard deviation of the predicted mean:

Darker values indicate better conditions to explore. Since we know the true RMSE surface, we can see that the best region (the northwest) is estimated to be an interesting location to take the optimization. The optimizer would pick a good location based on this model and evaluate this as the next parameter value. This most recent configuration is added to the GP’s training set and the process continues for a pre-specified number of iterations.

Yachen Yan created an R package for Bayesian optimization. He also made a modification so that we can use our initial random search as the substrate to the first GP used. To search a much wider parameter space, our code looks like:

> ## Define the resampling method > ctrl <- trainControl(method = "repeatedcv", repeats = 5) > > ## Use this function to optimize the model. The two parameters are > ## evaluated on the log scale given their range and scope. > svm_fit_bayes <- function(logC, logSigma) { + ## Use the same model code but for a single (C, sigma) pair. + txt <- capture.output( + mod <- train(y ~ ., data = train_dat, + method = "svmRadial", + preProc = c("center", "scale"), + metric = "RMSE", + trControl = ctrl, + tuneGrid = data.frame(C = exp(logC), sigma = exp(logSigma))) + ) + ## The function wants to _maximize_ the outcome so we return + ## the negative of the resampled RMSE value. `Pred` can be used + ## to return predicted values but we'll avoid that and use zero + list(Score = -getTrainPerf(mod)[, "TrainRMSE"], Pred = 0) + } > > ## Define the bounds of the search. > lower_bounds <- c(logC = -5, logSigma = -9) > upper_bounds <- c(logC = 20, logSigma = -0.75) > bounds <- list(logC = c(lower_bounds[1], upper_bounds[1]), + logSigma = c(lower_bounds[2], upper_bounds[2])) > > ## Create a grid of values as the input into the BO code > initial_grid <- rand_search$results[, c("C", "sigma", "RMSE")] > initial_grid$C <- log(initial_grid$C) > initial_grid$sigma <- log(initial_grid$sigma) > initial_grid$RMSE <- -initial_grid$RMSE > names(initial_grid) <- c("logC", "logSigma", "Value") > > ## Run the optimization with the initial grid and do > ## 30 iterations. We will choose new parameter values > ## using the upper confidence bound using 1 std. dev. > > library(rBayesianOptimization) > > set.seed(8606) > ba_search <- BayesianOptimization(svm_fit_bayes, + bounds = bounds, + init_grid_dt = initial_grid, + init_points = 0, + n_iter = 30, + acq = "ucb", + kappa = 1, + eps = 0.0, + verbose = TRUE) 20 points in hyperparameter space were pre-sampled elapsed = 1.53 Round = 21 logC = 5.4014 logSigma = -5.8974 Value = -10.8148 elapsed = 1.54 Round = 22 logC = 4.9757 logSigma = -5.0449 Value = -9.7936 elapsed = 1.42 Round = 23 logC = 5.7551 logSigma = -5.0244 Value = -9.8128 elapsed = 1.30 Round = 24 logC = 5.2754 logSigma = -4.9678 Value = -9.7530 elapsed = 1.39 Round = 25 logC = 5.3009 logSigma = -5.0921 Value = -9.5516 elapsed = 1.48 Round = 26 logC = 5.3240 logSigma = -5.2313 Value = -9.6571 elapsed = 1.39 Round = 27 logC = 5.3750 logSigma = -5.1152 Value = -9.6619 elapsed = 1.44 Round = 28 logC = 5.2356 logSigma = -5.0969 Value = -9.4167 elapsed = 1.38 Round = 29 logC = 11.8347 logSigma = -5.1074 Value = -9.6351 elapsed = 1.42 Round = 30 logC = 15.7494 logSigma = -5.1232 Value = -9.4243 elapsed = 25.24 Round = 31 logC = 14.6657 logSigma = -7.9164 Value = -8.8410 elapsed = 32.60 Round = 32 logC = 18.3793 logSigma = -8.1083 Value = -8.7139 elapsed = 1.86 Round = 33 logC = 20.0000 logSigma = -5.6297 Value = -9.0580 elapsed = 0.97 Round = 34 logC = 20.0000 logSigma = -1.5768 Value = -19.2183 elapsed = 5.92 Round = 35 logC = 17.3827 logSigma = -6.6880 Value = -9.0224 elapsed = 18.01 Round = 36 logC = 20.0000 logSigma = -7.6071 Value = -8.5728 elapsed = 114.49 Round = 37 logC = 16.0079 logSigma = -9.0000 Value = -8.7058 elapsed = 89.31 Round = 38 logC = 12.8319 logSigma = -9.0000 Value = -8.6799 elapsed = 99.29 Round = 39 logC = 20.0000 logSigma = -9.0000 Value = -8.5596 elapsed = 106.88 Round = 40 logC = 14.1190 logSigma = -9.0000 Value = -8.5150 elapsed = 4.84 Round = 41 logC = 13.4694 logSigma = -6.5271 Value = -8.9728 elapsed = 108.37 Round = 42 logC = 19.0216 logSigma = -9.0000 Value = -8.7461 elapsed = 52.43 Round = 43 logC = 13.5273 logSigma = -8.5130 Value = -8.8728 elapsed = 39.69 Round = 44 logC = 20.0000 logSigma = -8.3288 Value = -8.4956 elapsed = 5.99 Round = 45 logC = 20.0000 logSigma = -6.7208 Value = -8.9455 elapsed = 113.01 Round = 46 logC = 14.9611 logSigma = -9.0000 Value = -8.7576 elapsed = 27.45 Round = 47 logC = 19.6181 logSigma = -7.9872 Value = -8.6186 elapsed = 116.00 Round = 48 logC = 17.3060 logSigma = -9.0000 Value = -8.6820 elapsed = 2.26 Round = 49 logC = 14.2698 logSigma = -5.8297 Value = -9.1837 elapsed = 64.50 Round = 50 logC = 20.0000 logSigma = -8.6438 Value = -8.6914 Best Parameters Found: Round = 44 logC = 20.0000 logSigma = -8.3288 Value = -8.4956

Animate the search!

The final settings were found at iteration 44 with a cost setting of 485,165,195 and `sigma`

=0.0002043. I would have never thought to evaluate a cost parameter so large and the algorithm wants to make it even larger. Does it really work?

We can fit a model based on the new configuration and compare it to random search in terms of the resampled RMSE and the RMSE on the test set:

> set.seed(308) > final_search <- train(y ~ ., data = train_dat, + method = "svmRadial", + tuneGrid = data.frame(C = exp(ba_search$Best_Par["logC"]), + sigma = exp(ba_search$Best_Par["logSigma"])), + metric = "RMSE", + preProc = c("center", "scale"), + trControl = ctrl) > compare_models(final_search, rand_search) One Sample t-test data: x t = -9.0833, df = 49, p-value = 4.431e-12 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: -2.34640 -1.49626 sample estimates: mean of x -1.92133 > postResample(predict(rand_search, large_dat), large_dat$y) RMSE Rsquared 10.1112280 0.7648765 > postResample(predict(final_search, large_dat), large_dat$y) RMSE Rsquared 8.2668843 0.8343405

Much Better!

Thanks to Yachen Yan for making the `rBayesianOptimization`

package.

**leave a comment**for the author, please follow the link and comment on their blog:

**Revolutions**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.